今天这个文章让我们一起来学习下感知机:
一个传统的单层感知机如上图所示,其实理解起来很简单,我们可以直接理解为输入节点接受信号之后直接传输到输出节点,然后得到结果y....并且于输出节点的t相结合,这样就可以得到方程式:
y = 0.3X1+0.3X2+0.3X3+0.4
在我们给定训练数据集之后,第一次给定的权值基本不会是适合的,因此我们需要使用给定的训练数据集进行迭代学习...,规则如下:
给定的测试样例为(X,Y),而如今现在的模型输出为y,此时我们要对权值进行调整:
而这里边的η被称为学习率,这个学习率∈(0,1),并且很大程度上这个学习率是根据我们的经验得到的.如果我们选择的学习率过大...,容易造成权值计算的不稳定.如果选择的学习率太小,不能够充分体现出对于权值的修正,迭代次数太多.就跟我们显微镜对焦一样,左调调,右调调就会看的越来越清楚....所以从上述来看,本质上感知机只能够对输出层进行处理,学习能力是很有限的,泛化能力很差.我们不妨分析下:对于与,或,非这样的问题,如图所示:
是可以形成一个线性超平面,从而进行分类划分.