首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    大语言模型--开源数据集

    Huggingface排行榜默认数据集 Huggingface开源大模型排行榜: Open LLM Leaderboard - a Hugging Face Space by HuggingFaceH4...本文主要介绍Huggingface开源大模型排行榜上默认使用的数据集以及如何搭建自己的大模型评估工具 搭建大模型评估工具 1.下载数据集到本地 from datasets import load_dataset...介绍:该数据集也是多选题任务,根据难度划分成 arc_easy 和 arc_challenge,Huggingface 用的 arc_challenge 评测。...一个由7787个真正的小学水平的科学多项选择题组成的新数据集,arc_easy 只包含基于检索的算法和单词共现算法错误回答的问题。...是一个包含8.5k的小学数学题,主要用于测试大模型的数学和逻辑推理能力。

    94120

    数据集的划分--训练集、验证集和测试集

    为什么要划分数据集为训练集、验证集和测试集?         做科研,就要提出问题,找到解决方法,并证明其有效性。这里的工作有3个部分,一个是提出问题,一个是找到解决方法,另一个是证明有效性。...训练集、验证集和测试集 1. **训练集**:顾名思义指的是用于训练的样本集合,主要用来训练神经网络中的参数。 2....前人给出训练集、验证集和测试集 对于这种情况,那么只能跟随前人的数据划分进行,一般的比赛也是如此。...只需要把数据集划分为训练集和测试集即可,然后选取5次试验的平均值作为最终的性能评价。 验证集和测试集的区别         那么,训练集、校验集和测试集之间又有什么区别呢?...测试集是用于在完成神经网络训练过程后,为了客观评价模型在其未见过(未曾影响普通参数和超参数选择)的数据上的性能,因此测试与验证集和训练集之间也是独立不重叠的,而且测试集不能提出对参数或者超参数的修改意见

    5.3K50

    常见的大模型评测数据集

    创建该数据集是为了支持对需要多步骤推理的基本数学问题进行问答的任务。 GSM8K 是一个高质量的英文小学数学问题测试集,包含 7.5K 训练数据和 1K 测试数据。...Morgenstern 2011)的启发,进行了调整以提高针对数据集特定偏差的规模和鲁棒性。...数据集分为挑战集和简单集,其中前者仅包含由基于检索的算法和单词共现算法错误回答的问题。我们还包括一个包含超过 1400 万个与该任务相关的科学句子的语料库,以及该数据集的三个神经基线模型的实现。...CMMLU 是一个包含了 67 个主题的中文评测数据集,涉及自然科学、社会科学、工程、人文、以及常识等,有效地评估了大模型在中文知识储备和语言理解上的能力。...GAOKAO-Bench https://github.com/OpenLMLab/GAOKAO-Bench Gaokao 是一个中国高考题目的数据集,旨在直观且高效地测评大模型语言理解能力、逻辑推理能力的测评框架

    7.1K10

    torch04:全连接神经网络--MNIST识别和自己数据集

    本小节使用torch搭建线性回归模型,训练和测试: (1)定义模型超参数:输入大小、隐含层、输出、迭代次数、批量大小、学习率。...(2)定义训练数据,加餐部分是使用自己的数据集:(可参考:https://blog.csdn.net/u014365862/article/details/80506147) (3)定义模型(定义全连接神经网络..., 使用自己的数据集请参考:https://blog.csdn.net/u014365862/article/details/80506147 train_loader = torch.utils.data.DataLoader...: {} %'.format(100 * correct / total)) # 保存模型参数 torch.save(model.state_dict(), 'model.ckpt') 加餐:在自己数据集上使用...format(100 * correct / total)) # 保存模型参数 torch.save(model.state_dict(), 'model.ckpt') 总结: 加餐部分加入:在自己数据集上使用

    59010

    美国两大主要石油和天然气甲烷数据集

    简介该数据集提供了新墨西哥州南部和得克萨斯州西部二叠纪特拉华分盆地以及犹他州乌因塔盆地的高排放甲烷点源探测数据(千克/小时)。...甲烷排放是当前全球变暖的一个重要因素,而这个数据集提供了有关新墨西哥州南部和得克萨斯州西部二叠纪特拉华分盆地以及犹他州乌因塔盆地的高排放甲烷点源的探测数据。...这个数据集为科学家和研究人员提供了宝贵的资源,以深入了解这些地区的甲烷排放情况。通过分析这些数据,可以确定主要的甲烷排放源,并制定相关的控制和减排策略。...通过利用这个数据集,科学家和政策制定者可以更好地了解甲烷排放的现状和趋势,并制定相应的政策和行动计划。这对于减缓全球变暖、保护环境和人类福祉至关重要。...总而言之,这个数据集为研究人员和政策制定者提供了重要的数据资源,以深入了解新墨西哥州、得克萨斯州和犹他州这些地区的高排放甲烷点源。

    29510

    GEE数据集——美国大陆网格气候数据集PRISM 日数据集和月数据集

    简介 PRISM 日数据集和月数据集是由俄勒冈州立大学 PRISM 气候小组制作的美国大陆网格气候数据集。 网格是利用 PRISM(独立斜坡模型参数-海拔回归)开发的。...PRISM气候小组开展了一系列项目,其中一些项目支持空间气候数据集的开发。由此产生的一系列数据集反映了项目目标的范围,需要不同的站点网络、建模技术和时空分辨率。...在可能的情况下,我们向公众提供这些数据集,有的是免费的,有的是收费的,这取决于提供数据集的规模和难度以及活动的资金情况。...注释 警告:由于台站设备和位置变化、开放和关闭、观测时间不同以及使用相对较短的网络等非气候因素的影响,该数据集不应用于计算长达一个世纪的气候趋势。详情请参见数据集文档。...观测网络进行质量控制和发布站点数据需要时间。因此,PRISM 数据集要经过多次重新建模,直到六个月后才被视为永久数据集。可提供发布时间表。

    17810

    资源 | 神经网络调试手册:从数据集与神经网络说起

    Manual.》的文章,从数据集与神经网络两个方面分享了作者 Andrey Nikishaev 在调试神经网络方面的实践心得。 ? 调试神经网络是一项艰难的工作,专家也不例外。...数据集问题 尝试使用小数据集过拟合你的模型 一般来说神经网络应该在数百次迭代中过拟合你的数据。如果你的损失值不下降,那问题存在于更深层次。...使用具有扭曲的平衡数据集 比如训练分类数据的网络,你的训练数据应该对每一分类具有相同数量的输入。其他情况下则存在分类过拟合的可能性。神经网络对于所有的扭曲并非恒定不变,因此需要你对它们进行专门训练。...网络容量 vs 数据集大小 你的数据集应足够大,以便网络用来学习。如果你的数据集小,而网络很大,那么它会停止学习(某些情况下也会为大量的不同输入输出相同结果)。...梯度消失问题 一些激活函数,比如 Sigmoid 和 Tanh 正在遭受饱和问题。在其极限时,它们的导数接近于零,这将会消除梯度和学习过程。因此检查不同的函数比较好。现在标准的激活函数是 ReLU。

    666140

    PyTorch学习系列教程:三大神经网络在股票数据集上的实战

    导读 近几天的推文中,分别对深度学习中的三大神经网络——DNN、CNN、RNN进行了系统的介绍,今天本文以股票数据集为例对其进行案例实战和对比。...】 DNN、CNN和RNN是深度学习中的三大经典神经网络,分别有各自的适用场景。...三大神经网络预测效果对比 本文行文结构如下: 数据集准备 DNN模型构建及训练 CNN模型构建及训练 RNN模型构建及训练 对比与小结 01 数据集准备 本次实战案例选择了某股票数据,时间范围为2005...既然是时序数据,我们的任务是基于当前及历史一段时间的数据,预测股票次日的收盘价(Close字段),我们大体将历史数据的时间长度设定为30,而后采用滑动窗口的形式依次构建数据集和标签列,构建过程如下: X...1,而这种情况是模型在训练集上所学不到的信息…… 05 对比与小结 最后,我们综合对比一下三大神经网络模型在该股票预测任务上的表现。

    2.2K20

    针对时尚类MINIST数据集探索神经网络

    MNIST手写数字集是研究神经网络时最通用的数据集之一,现如今已经成为模型论证时的一个标杆。近期,Zalando的研究人员发布了一个包含有十种时尚类产品的数据集。...加载并探索数据集 数据可以直接从Keras载入,并加载到训练集(60,000张图像)和测试集(10,000张图像)中。...在第一层我们'压平'数据使(28x28)的形状变平至784。 模型摘要表提供了神经网络结构和参数的可视化。...3层神经网络的网络结构和参数摘要表 接下来,我们编译并训练该网络5代。...接下来,我们将讨论神经网络的激活函数。 这篇博客的灵感来自玛格丽特·梅纳德-里德关于这些数据的精彩的博客,以及我读过的许多关于训练神经网络的各种方法和决策的其他博客。

    1.2K10

    【深度学习基础】线性神经网络 | 图像分类数据集

    【作者主页】Francek Chen 【专栏介绍】 ⌈ PyTorch深度学习 ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。...它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。...)中的6000张图像和测试数据集(test dataset)中的1000张图像组成。...因此,训练集和测试集分别包含60000和10000张图像。测试数据集不会用于训练,只用于评估模型性能。...这个函数返回训练集和验证集的数据迭代器。此外,这个函数还接受一个可选参数resize,用来将图像大小调整为另一种形状。

    8210

    使用CNN卷积神经网络模型训练mnist数据集

    卷积操作就是卷积核(kernal)跟输入数据每个值相乘再加起来得到的一个值作为输出 ?...图源:https://flat2010.github.io/2018/06/15/手算CNN中的参数 数据预处理 在数据预处理上需要注意不再是一维的了,而要保持数组样式,是 28*28*1 的,其他的没差别...添加卷积层 filters=16 表示有 16 个卷积核(也叫滤镜) kernel_size=(5,5) 表示卷积核的尺寸 padding='same' 表示对原图片进行填充,使得输出能够保持和输入尺寸一致...从这幅图中可以看到,周围添加了一圈之后,经过卷积核再输出的还是原来的尺寸大小 添加池化层 池化层也有一个池化核,但池化运算分为几种: 最大池化核,取池化数据的最大值; 平均池化核,取池化数据的平均值...; 最小池化核,取池化数据的最小值; L2池化核,取池化数据的L2范数; 图示是最大池化过程 ?

    1.1K30

    手写数字识别数据集_卷积神经网络分类

    基于卷积神经网络的手写数字识别(附数据集+完整代码+操作说明) 配置环境 1.前言 2.问题描述 3.解决方案 4.实现步骤 4.1数据集选择 4.2构建网络 4.3训练网络 4.4测试网络 4.5图像预处理...问题描述 本文针对的问题为:随机在黑板上写一个数字,通过调用电脑摄像头实时检测出数字是0-9哪个数字 3.解决方案 基于Python的深度学习方法: 检测流程如下: 4.实现步骤 4.1数据集选择...手写数字识别经典数据集:本文数据集选择的FishionMint数据集中的t10k,共含有一万张28*28的手写图片(二值图片) 数据集下载地址见:https://github.com/Hurri-cane...本文所有代码都已经上传至Github上https://github.com/Hurri-cane/Hand_wrtten/tree/master 5.1文件说明 dataset文件夹存放的是训练数据集...num_images = struct.unpack_from(fmt_header, bin_data, offset) print('图片数量: %d张' % (num_images)) # 解析数据集

    75420
    领券