多元时间序列建模一直是吸引了来自经济,金融和交通等各个领域的研究人员的主题 ( 点击文末“阅读原文”获取完整代码数据******** )。
多元时间序列建模一直是吸引了来自经济,金融和交通等各个领域的研究人员的主题。多元时间序列预测的一个基本假设是,其变量相互依赖。
无处不在的缺失值导致多元时间序列数据只能部分观测,破坏了时间序列的完整性,阻碍了有效的时间序列数据分析。近年来,深度学习插补方法在提升损坏时间序列数据质量方面取得了显著的成功,从而提高了下游任务的性能。
之前的文章已经介绍了几种预测时间序列的方法:如何规范化数据,以实值或二进制变量的形式进行预测,以及如何处理高噪声中的过拟合。在上一篇文章中,我们只用了经过一些转换的收盘价,如果我们考虑历史数据中的最高价、最低价、开盘价、成交量,将会发生什么?这引出我们处理多元时间序列,每个时间点不止一个变量。在例子中,我们将使用整个OHLCV元组。
本文全面概述了深度学习用于时间序列异常检测的最新架构,提供了基于策略和模型的方法,并讨论了各种技术的优点和局限性。此外,还举例说明了近年来深度学习在时间序列异常检测中各领域的应用。
时间序列预测问题可以作为一个有监督学习问题来解决。
时间序列预测就是利用过去一段时间的数据来预测未来一段时间内的信息,包括连续型预测(数值预测,范围估计)与离散型预测(事件预测)等,具有非常高的商业价值。
随着云技术的飞速发展,云系统的复杂性和规模不断增加,云系统的稳定性受到了极大挑战。为了解决运维问题,运营商会通过指标(Metrics)、日志(Logs)等多个维度信息来了解云系统的运行状态。
选自arXiv 机器之心编译 参与:Panda AAAI 2018 于 2 月 7 日在美国新奥尔良闭幕,本次会议收录了腾讯 AI Lab 共 12 篇论文。这里我们编译介绍了其中的《降秩线性动态系统(Reduced-Rank Linear Dynamical Systems)》;研究结果表明该方法可以稳健地从长度较短的、有噪声的、有计数值的数据中学习隐含空间。此外,作者也已经在 GitHub 上公布了他们用 Matlab 实现 RRLDS 的代码。 论文地址:http://yuan-gao.net/pdf
Transformer 模型在自然语言处理和计算机视觉领域取得了巨大的成功,并成为了基础模型。然而,最近一些研究开始质疑基于Transformer的时间序列预测模型的有效性。这些模型通常将同一时间戳的多个变量嵌入到不可区分的通道中,并在这些时间标记上应用注意力机制来捕捉时间依赖关系。
多变量时间序列预测在金融、交通管理、能源和医疗保健等多个领域中扮演着至关重要的角色。最近的研究强调了通道独立性在抵抗分布漂移方面的优势,但忽视了通道间的相关性,限制了进一步的改进。一些方法通过使用注意力或混合器等机制来捕捉通道间的相关性,但它们要么引入了过多的复杂性,要么过于依赖相关性,在分布漂移下,尤其是在大量通道的情况下,难以取得满意的结果。
ACM SIGKDD(国际数据挖掘与知识发现大会,简称 KDD)是世界数据挖掘领域的最高级别的学术会议,由 ACM 的数据挖掘及知识发现专委会(SIGKDD)主办,被中国计算机协会推荐为 A 类会议。
ShapeNet_A Shapelet-Neural Network Approach for Multivariate Time Series Classification(AAAI21)
今天介绍一篇本周最新发表的多元时间序列预测模型SCNN。这篇文章的核心是,利用因素分解的思路将多元时间序列预测问题模块化,并得益于分解和模块化建模方法,实现多元时间序列预测的可解释性建模。
本文综述了深度学习在时间序列预测中的应用,特别是在流行病预测领域。尽管深度学习在时间序列预测中表现出显著优势,但仍面临挑战,如时间序列不够长、无法利用积累的科学知识以及模型的解释性。
今天给大家介绍一篇KDD 2023会议上,由IBM研究院发表的一篇多元时间序列预测工作,模型整体结构基于patch预处理+MLP,支持时序预测和时间序列表示学习两类任务,同时提出了多阶段校准的方法,在预估结构中考虑时间序列的层次关系和多变量之间的依赖关系。
深度学习的发展为我们创建下一代时间序列预测模型提供了强大的工具。深度人工神经网络,作为一种完全以数据驱动的方式学习时间动态的方法,特别适合寻找输入和输出之间复杂的非线性关系的挑战。最初,循环神经网络及其扩展的LSTM网络被设计用于处理时间序列中的顺序信息。然后,卷积神经网络被用于预测时间序列,因为它们在图像分析任务中的成功。
ACM SIGKDD(Conference on Knowledge Discovery and Data Mining, KDD)是世界数据挖掘领域的最高级别的国际会议,由 ACM(Association of Computing Machinery,计算机学会)的数据挖掘及知识发现专委会(SIGKDD)负责协调筹办,被中国计算机协会荐为A类会议。
华为在这2023年2月9日发布了一篇关于多元时间序列预测的文章,借鉴了NLP中前一阵比较热的Mixer模型,取代了Attention结构,不仅实现了效果上的提升,而且还实现了效率上的提高。
图神经网络在过去几年中获得了巨大的兴趣。这些强大的算法将深度学习模型扩展到非欧氏空间,并能够在包括推荐系统和社交网络在内的各种应用中实现最先进的性能。然而,这种性能是基于静态图结构假设的,这限制了图神经网络在数据随时间变化时的性能。时序图神经网络是考虑时间因素的图神经网络的扩展。近年来,各种时序图神经网络算法被提出,并在多个时间相关应用中取得了优于其他深度学习算法的性能。本综述讨论了与时空图神经网络相关的有趣主题,包括算法、应用和开放挑战。
多元时间序列(MTS)数据在各种应用领域中至关重要。由于其具有时序性和多源(多个传感器)属性,MTS数据本质上表现出时空(ST)依赖性,包括时间戳之间的时间相关性以及每个时间戳中传感器之间的空间相关性。为了有效利用此信息,基于图神经网络的方法(GNNs)已被广泛采用。
---- 新智元报道 作者:专知 编辑:好困 【新智元导读】图神经网络将深度学习模型扩展到非欧氏空间,并能够在包括推荐系统和社交网络在内的各种应用中实现最先进的性能。 这些强大的算法在过去几年中获得了巨大的兴趣。然而,这种性能是基于静态图结构假设的,这限制了图神经网络在数据随时间变化时的性能。时序图神经网络是考虑时间因素的图神经网络的扩展。 近年来,各种时序图神经网络算法被提出,并在多个时间相关应用中取得了优于其他深度学习算法的性能。本综述讨论了与时空图神经网络相关的有趣主题,包括算法、应用和开放
本文综述了时间序列数据中的通用表示学习方法,提出了一种新颖的分类方法,并讨论了其对提高学习表示质量的影响。文章全面回顾了各种神经网络架构、学习目标和数据相关技术,并总结了常用的实验设置和数据集。
基于Transformer的多变量时间序列预测,是否需要显示建模各个变量之间关系呢?今天这篇文章来自清华大学近期发表的工作SageFormer,提出了一种新的基于Transformer的多变量时间序列预测算法,核心是利用token表征建立多变量的图结构关系。下面给大家详细介绍一下这篇文章。
现如今,人们将深度学习运用到几乎所有领域,那些最“时髦的”领域包括计算机视觉、自然语言处理、语音分析、推荐系统以及预测系统。但是,有一个领域被大家遗忘在机器学习的角落,那就是信号分析(或时间序列分析)。本文中,将首先向大家展示信号和时间序列的重要性,接下来简要地回顾一下经典的方法,然后分享一下在Mawi公司运用深度学习处理信号的经验以及在算法交易领域的经验。
2023年是大语言模型和稳定扩散的一年,时间序列领域虽然没有那么大的成就,但是却有缓慢而稳定的进展。Neurips、ICML和AAAI等会议都有transformer 结构(BasisFormer、Crossformer、Inverted transformer和Patch transformer)的改进,还出现了将数值时间序列数据与文本和图像合成的新体系结构(CrossVIVIT), 也出现了直接应用于时间序列的可能性的LLM,以及新形式的时间序列正则化/规范化技术(san)。
技术总言: 这次主要说最近发展的无监督特征学习和深入学习,其对于时间序列模型问题的评价。这些技术已经展现了希望对于建模静态数据,如计算机视觉,把它们应用到时间序列数据正在获得越来越多的关注。这次主要概述了时间序列数据存在的特殊挑战,并提供了工作的评价,其含有把时间序列应用到非监督特征学习算法或者是有选择的促成特征学习算法的变动去考虑目前时间序列数据的挑战。 ---- 当人们大脑在学习任务的时候,如语言、视觉和运动,时间是一种自然元素总是存在的。大多数真实世界的数据有一些时间成份,无论是自然过程的测量值(如
来源:DeepHub IMBA本文约3800字,建议阅读10分钟本文中我们将使用深度学习方法 (LSTM) 执行多元时间序列预测。 使用 LSTM 进行端到端时间序列预测的完整代码和详细解释。 我们先来了解两个主题: 什么是时间序列分析? 什么是 LSTM? 时间序列分析:时间序列表示基于时间顺序的一系列数据。它可以是秒、分钟、小时、天、周、月、年。未来的数据将取决于它以前的值。 在现实世界的案例中,我们主要有两种类型的时间序列分析: 单变量时间序列 多元时间序列 对于单变量时间序列数据,我们将使用单列进行
表示学习作为深度学习中的核心,近期越来越多的被应用到了时间序列领域中,时间序列分析的表示学习时代已经来了。本文为大家带来了2020年以来顶会的5篇时间序列表示学习相关的核心工作梳理。
2023年是大语言模型和扩散模型取得辉煌成就的一年,时间序列领域虽然没有那么大的成就,但是却有缓慢而稳定的进展。
这篇文章带大家读两篇近期多元时间序列分类工作。一篇是TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time Series Classification,通过动态图学习的方式刻画多变量之间的关系,指导多元时间序列分类;另一篇是Enhancing Multivariate Time Series Classifiers through Self-Attention and Relative Positioning Infusion,在卷积时间序列分类网络的基础上,引入了注意力机制,提升多元序列分类小姑偶。
WSDM的英文全称是 The International Conference on Web Search and Data Mining,中文意思是国际互联网检索与数据挖掘会议,由SIGIR、SIGKDD、SIGMOD和SIGWEB四个专委会协调筹办,在互联网搜索、数据挖掘领域享有较高学术声誉,被中国计算机协会推荐为B类会议。在清华大学最新发布的新版计算机学科推荐学术会议和期刊列表中,WSDM已被列为准A类学术会议。
从2017年开始,时空图神经网络模型被广泛应用于多元时间序列预测、交通预测等应用场景,然而到了2022年,这些方法的发展似乎出现了停滞:模型越来越复杂,性能提升非常有限(甚至倒退)。
多元时间序列预测任务主要解决的是输入多变量时间序列,预测多变量未来序列的问题,多变量的序列之间存在一定的相互影响关系。多元时间序列预测相比一般的单变量时间预测,如何在建模temporal关系的同时建立不同变量空间上的关系至关重要。今天给大家介绍两篇2022年8月份发表的最新多元时间序列预测工作,两篇工作均有开源代码。
随着物联网的普及和工业技术的不断发展,高效管理海量时间序列的需求越来越广泛,数据量越来越庞大。时间序列主要分为两种,即单元时间序列和多元时间序列。单元时间序列是指一个具有单个时间相关变量的序列,单元时间序列只包含一列时间戳和一列值。多元时间序列是指一个具有多个时间相关变量的序列,多元时间序列包含多个一元时间序列作为分量,各个一元时间序列的采样时间点相同,所以数据可以用矩阵形式表示,每行为一个时间点,每列为一个一元时间序列。
时间数据,特别是时间序列和时空数据,在现实世界的应用中普遍存在。这些数据捕获动态系统的测量值,并由物理和虚拟传感器大量产生。分析这些数据类型对于利用它们所包含的丰富信息至关重要,从而有益于各种下游任务。近年来,大语言模型和其他基础模型的进步促使这些模型在时间序列和时空数据挖掘中的使用不断增加。这些方法不仅增强了跨多个领域的模式识别和推理能力,而且为能够理解和处理常见时间数据的人工通用智能奠定了基础。
时间序列分类(time series classification)是数据挖掘领域的重要任务,它涉及对按时间顺序排列的数据点进行标记和预测。此类数据广泛存在于金融、医疗、工业等多个领域,因此时间序列分类对于决策支持和系统开发具有重要意义。
在这篇文章中,我们将深入探讨时间序列预测的基本概念和方法。我们将首先介绍单元预测和多元预测的概念,然后详细介绍各种深度学习和传统机器学习方法如何应用于时间序列预测,包括循环神经网络(RNN)、一维卷积神经网络(1D-CNN)、Transformer、自回归模型(AR)、状态空间模型、支持向量机(SVM)和随机森林(RF)等。我们还会讨论这些方法在单元预测和多元预测中的适用性。
总第92篇 01|时间序列定义: 时间序列是按照一定的时间间隔排列的一组数据,其时间间隔可以是任意的时间单位,如小时、日、周月等。比如,不同时间段某产品的用户数量,以及某个在网站的用户行为,这些数据形成了以一定时间间隔的数据。 人们希望通过对这些时间序列的分析,从中发现和揭示现象发展变化的规律,尽可能多地从中提取所需要的信息,并将这些知识和信息用于预测,以掌握和预测未来行为。对于时间序列的预测,由于很难确定它与其他变量之间的关系,这时我们就不能用回归去预测,而应使用时间序列方法进行预测。 采用时间序
Jason Brownlee 机器学习方法,比如深度学习,是可以用来解决时间序列预测问题的。 但在使用机器学习之前,时间序列问题需要被转化为监督学习问题。从仅仅是一个序列,变成成对的输入、输出序列。
时间序列异常检测是一项重要的任务,其目标是从时间序列的正常样本分布中识别异常样本。这一任务的最基本挑战在于学习一个能有效识别异常的表示映射。
NeurIPS,全称神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems),是一个关于机器学习和计算神经科学的顶级国际会议。该会议固定在每年的12月由NeurIPS基金会主办,被中国计算机协会推荐为A类会议。
AI科技评论按:本文作者 Jason Brownlee 为澳大利亚知名机器学习专家,对时间序列预测尤有心得。原文发布于其博客。 Jason Brownlee 机器学习方法,比如深度学习,是可以用来解决时间序列预测问题的。 但在使用机器学习之前,时间序列问题需要被转化为监督学习问题。从仅仅是一个序列,变成成对的输入、输出序列。 这篇教程里,你将学到如何把单变量、多变量时间序列问题转为机器学习算法能解决的监督学习问题。本教程包含: 如何创建把时间序列数据集转为监督学习数据集的函数; 如何让单变量时间序
今天又是一篇Transformer梳理文章,这次应用场景是时间序列预测。Transformer的序列建模能力,让其天然就比较适合时间序列这种也是序列类型的数据结构。但是,时间序列相比文本序列也有很多特点,例如时间序列具有自相关性或周期性、时间序列的预测经常涉及到周期非常长的序列预测任务等。这些都给Transformer在时间序列预测场景中的应用带来了新的挑战,也使业内出现了一批针对时间序列任务的Transformer改造。下面就给大家介绍7篇Transformer在时间序列预测中的应用。
我们被客户要求撰写关于气象集成预报技术的研究报告,包括一些图形和统计输出。 随着天气预报技术的发展,数值预报产品日益丰富,预报方法多种多样 ( 点击文末“阅读原文”获取完整代码数据******** )。
台湾大学林轩田机器学习笔记 机器学习基石 1 – The Learning Problem 2 – Learning to Answer Yes/No 3 – Types of Learning 4 – Feasibility of Learning 5 – Training versus Testing 6 – Theory of Generalization 7 – The VC Dimension 8 – Noise and Error 9 – Linear Regression 10 – Log
Statsmodels库是Python中一个强大的统计分析库,包含假设检验、回归分析、时间序列分析等功能,能够很好的和Numpy和Pandas等库结合起来,提高工作效率。
领取专属 10元无门槛券
手把手带您无忧上云