首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

深度神经网络移动终端GPU加速实践

MobileNet模型 MobileNet是谷歌为移动终端设备专门设计的高效深度神经网络模型,整个模型的参数量以及运算量都控制的比较小,并且在图像分类和物体检测等任务上均有着非常不错的效果。...于是,我们尝试用GPU加速跑模型。 GPU编程技术选择 为了让模型在GPU上跑起来,我们需要针对GPU编程。...因此,每段GPU代码同时有多个线程在访问,这种并行的工作形式非常适合神经网络的运行。...加速效果 整套GPU实现的逻辑打通后,iOS平台在iPhone X上实际测试到GPU相比CPU的速度提升了4倍;Android平台在华为P9上实际测试到GPU相比CPU的速度提升了3倍。...实践成果 整个实践过程下来,对于如何选择并训练模型,处理数据,以及在终端移动设备上工程化落地深度神经网络并做GPU加速,我们有了丰富的认识和理解,对于这类AI项目有了更多的技术储备,对于AI本身也有了更为深刻的感悟

1.9K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习“引擎”之争:GPU加速还是专属神经网络芯片?

    采用GPU加速与只采用CPU训练CNN的性能比较 以ImageNet竞赛为例,基于GPU加速的深度学习算法,百度、微软和Google的计算机视觉系统在ImageNet图像分类和识别测试中分别达到了5.98%...Caffe、Theano和Torch,以及 NVIDIA 完整的 GPU 加速深度学习库 cuDNN 2.0。...国内语音识别领头羊科大讯飞,基于多GPGPU和InfiniBand构建了一个环形的并行学习架构,用于DNN、RNN、CNN等模型训练,效果不错,但采用InfiniBand也让其他从业者羡慕其“土豪”行径...DIGITS 可在安装、配置和训练深度神经网络过程中为用户提供指导,具有便于从本地和网络加载训练数据集的用户界面和工作流程管理能力,并提供实时监控和可视化功能,目前支持 GPU 加速版本 Caffe,详见...采用GPU加速的深度学习的企业 GPU还是专用芯片?

    1.3K40

    【玩转 GPUGPU加速的AI开发实践

    如上图所示,HK-WEKA人工智能数据平台支持英伟达的GPUDirect存储协议,该协议绕过了GPU服务器的CPU和内存,使GPU能够直接与HK-WEKA存储进行通信,将吞吐量加速到尽可能快的性能。...二、NVIDIA Riva SDKNVIDIA Riva 是一个 GPU 加速的 SDK,用于构建和部署完全可定制的实时语音 AI 应用程序,这些应用程序可以实时准确地交付。...四、NVIDIA GPU 加速“ AI +分子模拟”,助力深势科技打造微尺度工业设计平台本案例中通过 NVIDIA A100 Tensor Core GPU,深势科技开创的“多尺度建模+机器学习+高性能计算...NVIDIA GPU 加速科学计算,释放“AI + Science”巨大潜力“AI + Science” 的科学研究范式是当下的前沿热点。...深势科技作为AI+Science范式的典型企业,致力于以算力算法的进展切实赋能科研突破与产业升级,NVIDIA GPU 助力深势科技加速实现技术迭代与产品部署。

    1.1K00

    tensorflow的GPU加速计算

    虽然GPU可以加速tensorflow的计算,但一般来说不会把所有的操作全部放在GPU上,一个比较好的实践是将计算密集型的运算放在GPU上,而把其他操作放到CPU上。...深度学习的多GPU并行训练模式tensorflow可以很容易地利用单个GPU加速深度学习模型的训练过程,但是利用更多的GPU或者机器,需要了解如何并行化地训练深度学习模型。...下面给出了具体代码,在多GPU上训练深度学习模型解决MNIST问题。使用mnist_inference.py程序来完成神经网络的前向传播过程。...以下代码给出了新的神经网络训练程序mnist_multi_gpu_train.py。...def main(argv=None): # 将简单的运算放在CPU上,只有神经网络的训练过程放在GPU上。

    7.4K10

    视频编码的GPU加速

    同时,在GPU领域,随着CUDA等通用计算平台的不断发展,GPU逐渐成为了通用计算领域中不可或缺的硬件。利用GPU对视频编码进行加速成为了学术界和工业界的热点。 1....目前,基于CUDA的GPU加速已经在深度学习、图像处理、科学计算等领域有着广泛应用。 2. 编码加速 目前,最新的视频编码标准是HEVC,基于GPU的HEVC编码加速研究已经有很多。...这就要求加速算法必须提高吞吐量。 在HEVC中,整像素搜索部分是以PU块为单位进行。然而,HEVC的PU块可选大小分布广泛,最大可取64x64,最小时边长仅为4。...在进行GPU运算时,首先要把数据从主机内存中传输到GPU显存中,合理地进行I/O设计是GPU效率的关键。...总结 本文主要介绍了常见的HEVC的GPU加速方法和GPU程序设计时要注意的问题。主机和设备之间的I/O是GPU优化的重点问题,需要精心设计。

    3.1K40

    PyTorch-GPU加速实例

    补充知识:pytorch使用gpu对网络计算进行加速 1.基本要求 你的电脑里面有合适的GPU显卡(NVIDA),并且需要支持CUDA模块 你必须安装GPU版的Torch,(详细安装方法请移步pytorch...官网) 2.使用GPU训练CNN 利用pytorch使用GPU进行加速方法主要就是将数据的形式变成GPU能读的形式,然后将CNN也变成GPU能读的形式,具体办法就是在后面加上.cuda()。...代表不支持 ''' 注意在进行某种运算的时候使用.cuda() ''' test_data=test_data.test_labels[:2000].cuda() ''' 对于CNN与损失函数利用cuda加速...加速。...切换到CPU上进行操作 eg: loss = loss.cpu() acc = acc.cpu() 理解并不全,如有纰漏或者错误还望各位大佬指点迷津 以上这篇PyTorch-GPU加速实例就是小编分享给大家的全部内容了

    2.5K21

    Javascript如何实现GPU加速

    一、什么是Javascript实现GPU加速? CPU与GPU设计目标不同,导致它们之间内部结构差异很大。 CPU需要应对通用场景,内部结构非常复杂。...而GPU往往面向数据类型统一,且相互无依赖的计算。 所以,我们在Web上实现3D场景时,通常使用WebGL利用GPU运算(大量顶点)。 但是,如果只是通用的计算场景呢?...测试平台 测试结论 PC GPU较CPU优势较少 iOS GPU较CPU优势较少 Android vivoX20(运行10次平均)CPU:770ms,GPU:270GPU较CPU快2.85倍三星S7(运行...10次平均)CPU:982ms,GPU:174msGPU较CPU快5.64倍 2.4、使用GPGPU意义: GPU与CPU数据传输过程,与GPU实际运算耗时相当,所以使用GPU运算传输成本过高,实测在...本测试案例是从webAR项目中抽取,需要实时跟踪用户摄像头处理视频流(256*256),使用GPU计算意义非常大,否则无法实现实时跟踪。 三、如何实现GPU通用计算?

    2.4K60

    CSS 强制启用 GPU 加速

    开下任务管理器发现 CPU 满了,GPU 大概跑了一半。 试着用了所谓的“GPU 加速”后,情况改善不少,虽然还是远没有到达 30 帧。 在这机房上课真的折磨。...原理 CSS 的动画,变换和过渡并不会自动启用 GPU 加速,而是使用浏览器更慢的软件渲染引擎执行。 而许多浏览器提供了使用某些CSS规则的时候开启 GPU 加速渲染的功能。...这种是最简单的诱骗浏览器开启 GPU 加速的方法。 这样就可以强制浏览器使用 GPU 来渲染这个元素,而不是 CPU。...如果用 Tailwind CSS 的话,官方就有 GPU 加速的玩法,直接加一个 transform-gpu。...合成层是一个可以被 GPU 处理的图层。当你对这个元素进行变化时,浏览器就会让 GPU 来更新合成层上的位图。 示例 再来一个简单的示例。 示例 1:一个简单的旋转动画,没有使用 GPU 加速

    1K20

    GPU加速Keras模型——Colab免费GPU使用攻略

    本文将介绍对Keras模型训练过程进行加速的方法。重点介绍Google 的Colab平台的免费GPU资源使用攻略。...3,设置GPU加速选项 在 修改/笔记本设置/硬件加速器 下拉菜单选择GPU即可。 ? 通过运行 nvidia-smi命令,我们可以查看GPU的一些基本信息。 ?...4,上传训练数据 我们使用《Keras图像数据预处理范例——Cifar2图片分类》文章中提到的Cifar2数据集的分类项目来演示GPU对Keras模型训练过程的的加速效果。...经过试验,在我们这个例子中,不使用硬件加速器时,模型训练完成用时187.6s,使用GPU硬件加速器时模型训练完成用时53.2s,约有3倍多的加速效果。...当模型参数更多,张量计算任务更加繁重时,GPU加速效果更加明显,有时候能够达到5倍到10倍的提升。 老铁,不走一个试试看吗?

    3.6K31

    GPU进行TensorFlow计算加速

    为了加速训练过程,本文将介绍如何如何在TensorFlow中使用单个GPU进行计算加速,也将介绍生成TensorFlow会话(tf.Session)时的一些常用参数。...而一台机器上不同GPU的名称是不同的,第n个GPU在TensorFlow中的名称为/gpu:n。比如第一个GPU的名称为/gpu:0,第二个GPU名称为/gpu:1,以此类推。...CPU上(比如a_gpu和a_gpu/read),而可以被GPU执行的命令(比如a_gpu/initial_value)依旧由GPU执行。...''' 虽然GPU可以加速TensorFlow的计算,但一般来说不会把所有的操作全部放在GPU上。一个比较好的实践是将计算密集型的运算放在GPU上,而把其他操作放到CPU上。...# 只使用第二块GPUGPU编号从0开始)。在demo_code.py中,机器上的第二块GPU的 # 名称变成/gpu:0,不过在运行时所有/gpu:0的运算将被放在第二块GPU上。

    2K00

    pytorch基础知识-GPU加速

    本节比较简单,介绍一个显卡加速功能。 一般我们在使用笔记本电脑或者台式机进行神经网络结构计算时,默认使用cpu计算,但cpu运算速度十分有限,一个专门搞学术研究的人常配备一个英伟达显卡来加速计算。...GPU加速功能可以将运算切入到显卡中进行,从而提高运算速度。 该方法在pytorch 0.3版本以前较麻烦,当时是在代码后面加入.cpu()进行。...import torch print(torch.cuda.is_available()) # 返回True代表支持,False代表不支持 具体在神经网络中,该这样使用 import torch import...torch.device('cuda:0') # 'cuda:0'当中的0为想要使用显卡的编号 # 这里的0表示使用的是第一张显卡 net = MLP().to(device) # 使用.to函数将神经网络模块搬到...上去 同样的,数据部分也可以转移到GPU上去 data, target = data.to(device), target.to(device) 这里要注意同一个数据在CPU和在GPU上建立后是完全不一样的

    1.1K10

    【玩转 GPUGPU加速AI开发:硬件技术与实践探索

    GPU作为一种强大的硬件加速器,由于其对计算密集型任务的高效加速和优质图形处理能力的突出表现,正成为越来越多的AI应用领域的首选设备。...该技术使用基于GPU的Tensor Cores进行了深度学习网络训练、推理加速,使图像生成速度更快、画面更加精细。...此外,Sketch-RNN和Pix2Pix这种基于卷积神经网络的算法也使用GPU进行训练和加速,并且在人工智能创意拓展领域中有很好的实践效果。...这种基于语音处理技术的AI技术也可以使用GPU进行加速。比如,当一段长时间语音需要生成后,可以使用GPU进行批量计算,来加速任务的完成,同时使得AI语音合成的效果更加的自然流畅。...图片结语GPU加速的AI开发和实践探索,不断创新的GPU硬件技术,以及对这些技术进行量身定制以满足特定市场需求的技术创新都表明,GPU将会成为未来人工智能领域最重要的设备之一。

    1.3K00
    领券