首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

离子反应多个选择丢失以前选择的值

离子反应是指在化学反应中,离子之间发生的相互作用和转化的过程。离子反应可以分为阳离子反应和阴离子反应。

阳离子反应是指正电荷离子与其他离子或分子之间的反应。这种反应通常涉及金属离子,如铁离子、铜离子等。阳离子反应的一个典型例子是金属与酸反应生成盐和氢气的反应,如铁与盐酸反应生成氯化铁和氢气。

阴离子反应是指负电荷离子与其他离子或分子之间的反应。这种反应通常涉及非金属离子,如氯离子、氧离子等。阴离子反应的一个典型例子是氯离子与银离子反应生成沉淀的氯化银的反应。

离子反应在化学实验室中有广泛的应用。它可以用于合成化合物、分离混合物、检测物质等。离子反应也在工业生产中起着重要的作用,例如在电镀、电池制造、药物合成等过程中都会涉及到离子反应。

在云计算领域,离子反应并不是一个常见的概念或术语。云计算主要涉及到计算资源的虚拟化、存储和网络的管理、数据的处理和分析等方面。离子反应与云计算并没有直接的关联。

腾讯云作为一家知名的云计算服务提供商,提供了丰富的云计算产品和解决方案。您可以访问腾讯云官方网站(https://cloud.tencent.com/)了解更多关于腾讯云的产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Nat. Biotechnol. | 用机器学习预测多肽质谱库

    本文介绍Max-Planck生物化学研究所计算系统生物化学研究组的Jürgen Cox近期发表在Nature Biotechnology的综述Prediction of peptide mass spectral libraries with machine learning。最近开发的机器学习方法用于识别复杂的质谱数据中的肽,是蛋白质组学的一个重大突破。长期以来的多肽识别方法,如搜索引擎和实验质谱库,正在被深度学习模型所取代,这些模型可以根据多肽的氨基酸序列来预测其碎片质谱。这些新方法,包括递归神经网络和卷积神经网络,使用预测的计算谱库而不是实验谱库,在分析蛋白质组学数据时达到更高的灵敏度或特异性。机器学习正在激发涉及大型搜索空间的应用,如免疫肽组学和蛋白质基因组学。该领域目前的挑战包括预测具有翻译后修饰的多肽和交联的多肽对的质谱。将基于机器学习的质谱预测渗透到搜索引擎中,以及针对不同肽类和测量条件的以质谱为中心的数据独立采集工作流程,将在未来几年继续推动蛋白质组学应用的灵敏度和动态范围。

    01

    Nat. Mater. | 利用机器学习和组合化学加速发现可电离脂质mRNA传递

    今天为大家介绍的是来自Robert S. Langer与Daniel G. Anderson团队的一篇论文。为了充分发挥信使RNA(mRNA)疗法的潜力,扩大脂质纳米粒子的工具库至关重要。然而,脂质纳米粒子开发的一个关键瓶颈是识别新的可离子化脂质。在本文中,作者描述了一种加速发现用于mRNA递送的有效可离子化脂质的方法,该方法结合了机器学习和先进的组合化学工具。作者从一个简单的四组分反应平台开始,创建了一个化学多样性的584种可离子化脂质库。作者筛选了包含这些脂质的脂质纳米粒子的mRNA转染效率,并使用这些数据作为训练各种机器学习模型的基础数据集。作者选择了表现最佳的模型来探查一个包含40,000种脂质的扩展虚拟库,合成并实验评估了其中表现突出的16种脂质。作者得到了脂质119-23,它在多种组织中的肌肉和免疫细胞转染中表现优于已建立的基准脂质。该方法促进了多用途可离子化脂质库的创建和评估,推进了精确mRNA递送的脂质纳米粒子配方的发展。

    01

    机器学习驱动的电池电极高级表征

    编辑 | 白菜叶 材料表征,即通过各种物理、化学等测试方法,揭示和确定材料的结构特征,是科学家理解锂离子电池电极及其性能限制的基础方式。基于实验室的表征技术地进步,科学家们已经对电极的结构和功能关系产生了许多强有力的见解,但还有更多未知情况等待探索。该技术的进一步地改进,取决于对材料中复杂的物理异质性的更深入理解。 然而,表征技术的实际局限性,限制了科学家直接组合数据的能力。例如,某些表征技术会对材料造成破坏,因此无法对同一区域进行其他参数的分析。幸运的是,人工智能技术拥有巨大潜力,可以整合传统表征技术所

    02

    文献翻译:Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in...

    信息基因的选择是基因表达研究中的重要问题。基因表达数据的小样本量和大量基因特性使选择过程复杂化。此外,所选择的信息基因可以作为基因共表达网络分析的重要输入。此外,尚未充分探索基因共表达网络中枢纽基因和模块相互作用的鉴定。本文提出了一种基于支持向量机算法的统计学上基因选择技术,用于从高维基因表达数据中选择信息基因。此外,已经尝试开发用于鉴定基因共表达网络中的中枢基因的统计学方法。此外,还开发了差异中枢基因分析方法,以在案例与对照研究中基于它们的基因连接性将鉴定的中枢基因分组成各种组。基于这种提出的方​​法,已经开发了R包,即dhga(https://cran.rproject.org/web/packages/dhga)。在三种不同的农作物微阵列数据集上评估了所提出的基因选择技术以及中枢基因识别方法的性能。基因选择技术优于大多数信息基因的现有技术。所提出的中枢基因识别方法,与现有方法相比,确定了少数中枢基因,这符合真实网络的无标度属性原则。在这项研究中,报道了一些关键基因及其拟南芥直系同源物,可用于大豆中的铝毒性应激反应工程。对各种选定关键基因的功能分析揭示了大豆中铝毒性胁迫响应的潜在分子机制。

    01

    MIT新型“大脑芯片”问世,数万人工大脑突触组成,纸屑大小却堪比超算

    大数据文摘授权转载学术头条 作者:曹绮桐 “微型化”是科技便利生活的重要一环。试想,有一天,我们可以把庞大的超级计算机不断缩小,直到可以把它们装进口袋;我们可以随身携带微型人工智能大脑,它们甚至可以在没有超级计算机、互联网或云计算的情况下运行,在它们微不足道的身体里运行着庞大的算法。 而这已不单单是触不可及的幻想。 近日,麻省理工学院(MIT)的工程师们设计了一种“大脑芯片”,让我们向那种未来又迈进了一步。研究人员所用的芯片物理体积比一片纸屑还要小,但却被工程师们放置了成千上万个“人工大脑突触”,这种被称为“忆阻器”的硅基元件,能够模仿人类大脑中信息传递的突触结构。

    02

    一种改进的深度极限学习机预测锂离子电池的剩余使用寿命

    针对锂离子电池剩余使用寿命预测不准确的问题,提出了一种改进的灰狼优化器优化深度极值学习机(CGWO-DELM)数据驱动预测方法。该方法使用基于自适应正常云模型的灰狼优化算法来优化深度极值学习机的偏差、输入层的权重、激活函数的选择和隐藏层节点的数量。在本文中,从放电过程中提取了可以表征电池性能退化的间接健康因素,并使用皮尔逊系数和肯德尔系数分析了它们与容量之间的相关性。然后,构建CGWO-DELM预测模型来预测锂离子电池的电容。锂离子电池的剩余使用寿命通过1.44 a·h故障阈值间接预测。预测结果与深度极限学习机器、长期记忆、其他预测方法以及当前的公共预测方法进行了比较。结果表明,CGWO-DELM预测方法可以更准确地预测锂离子电池的剩余使用寿命。

    05

    Nat. Commun. | Metal3D: 一种用于准确预测蛋白质中金属离子位置的通用深度学习框架

    今天为大家介绍的是来自Ursula Rothlisberger研究团队的一篇关于金属离子位置预测的论文。金属离子是许多蛋白质的重要辅因子,在酶设计、蛋白质相互作用设计等许多应用中发挥关键作用,它们在生物体中丰富存在,并通过强烈的相互作用与蛋白质结合,并具有良好的催化特性。然而,生物相关金属(如锌)的复杂电子结构限制了金属蛋白质的计算设计。在这项工作中,作者开发了两个工具——基于3D卷积神经网络的Metal3D和仅基于几何标准的Metal1D,以改进蛋白质结构中锌离子的位置预测。与其他当前可用的工具进行比较显示,Metal3D是迄今为止最准确的锌离子位置预测器,其预测结果与实验位置相差在0.70 ± 0.64 Å范围内。Metal3D为每个预测位置输出置信度指标,并可用于在蛋白质数据库中具有较少同源物的蛋白质上工作。Metal3D可以预测全局锌密度,用于计算预测结构的注释,还可以预测每个残基的锌密度,用于蛋白质设计工作流程中。Metal3D目前是针对锌进行训练的,但通过修改训练数据,该框架可以轻松扩展到其他金属。

    02
    领券