数据清理(data cleaning) 的主要思想是通过填补缺失值、光滑噪声数据,平滑或删除离群点,并解决数据的不一致性来“清理“数据。
关键点是由DOG空间的局部极值点组成的,关键点的初步探查是通过同一组内各DoG相邻两层图像之间比较完成的。为了寻找DoG函数的极值点,每一个像素点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如图下图所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。
本文介绍在ArcMap软件中,实现栅格图像重采样的具体操作,以及不同重采样方法的选择依据。
平均精度(Average Precision,mAP)是一种常用的用于评估目标检测模型性能的指标。在目标检测任务中,模型需要识别图像中的不同目标,并返回它们的边界框(bounding box)和类别。mAP用于综合考虑模型在不同类别上的准确度和召回率。
插值法在图像处理和信号处理、科学计算等领域中是非常常用的一项技术。不同的插值函数,可以根据给定的数据点构造出来一系列的分段函数。这一点有别于函数拟合,函数拟合一般是指用一个给定形式的连续函数,来使得给定的离散数据点距离函数曲线的总垂直距离最短,不一定会经过所有的函数点。比如在二维坐标系内,用一条直线去拟合一个平面三角形所对应的三个顶点,那么至少有一个顶点是不会落在拟合出来的直线上的。而根据插值法所得到的结果,一定是经过所有给定的离散点的。本文针对scipy和numpy这两个python库的插值算法接口,来看下两者的不同实现方案。
图像增强方法在数字图像处理中占有重要地位,它能够有效提高图像的视觉效果,增强图像的细节信息,从而在医学、遥感、工业检测等多个领域发挥重要作用
2.1 最近邻插值 (Nearest Neighbor Interpolation) —— 零阶插值法
今天我们来聊聊轨迹插值,在机器人的运动规划和控制领域,参考轨迹的生成是一个历史悠久的问题,已经发展出了一系列的方法。今天我们就来聊一聊轨迹插值领域中最常见的轨迹插值方法:多项式插值。
这系列的笔记来自著名的图形学虎书《Fundamentals of Computer Graphics》,这里我为了保证与最新的技术接轨看的是英文第五版,而没有选择第二版的中文翻译版本。不过在记笔记时多少也会参考一下中文版本
SciPy的interpolate模块提供了许多对数据进行插值运算的函数,范围涵盖简单的一维插值到复杂多维插值求解。 当样本数据变化归因于一个独立的变量时,就使用一维插值;反之样本数据归因于多个独立变量时,使用多维插值。
在计算机视觉领域,经常需要检测极值位置,比如SIFT关键点检测、模板匹配获得最大响应位置、统计直方图峰值位置、边缘检测等等,有时只需要像素精度就可以,有时则需要亚像素精度。本文尝试总结几种常用的一维离散数据极值检测方法,几个算法主要来自论文《A Comparison of Algorithms for Subpixel Peak Detection》,加上自己的理解和推导。
描边的实现方法采用将模型的轮廓线顶点向法线(或顶点)的方向扩展一定的像素得到。也可通过边缘检测(基于法线和深度)来实现。
'linear':线性插值是一种基于线性关系进行插值的方法。它假设数据点之间的变化是线性的,并在相邻数据点之间进行插值。
计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些是怎么来的还是比较费时费力的。比如SIFT算法中一个重要的操作:求取描述子的主方向。好多文章只是一提而过或忽略,然后直接给出一个公式,SIFT算法的原作者也提使用抛物线插值,但是具体怎么插的就不太详尽了,对于初学者来说更是不知所云。因此本文打算在参看的文章上对有关这些细节给出一些比较详细的说明,还有本文尽量对操作过程配备对应图片或示意图说明,同时附上robwhesss开源SIFT C代码对应程序块并给予注解,方便理解。
figure yi_nearest=interp1(t,p,x,'nearest');%最邻近插值法 plot(t,p,'ko'); hold on plot(x,yi_nearest,'g','LineWidth',1.5);grid on; title('Nearest Method');
全称 Bjøntegaard-Delta rate,用于评价不同的视频编码器RD(率-Rate,失真-Distortion)性能 是 Gisle Bjøntegaard 等人在 H.264 标准开发过程中提出的
盒子滤波器的值要不是常数,要不就是零,积分为1。在前面已经提过: 离散滤波器形式:
Unity是一款3D引擎软件,内置NVIDIA PhysX物理引擎,使3D物体具备物理属性,产生物理效果。
MarkPoint是什么效果?如上图,一闪一闪亮晶晶的效果,这是在Echarts中对应的效果。我最早看到的是腾讯的一个Flash的版本,显示当前QQ在线人数的全国分布效果,感觉效果很炫,当时也在想,怎么用JS,HTML5来做出类似的效果,但说实话,没什么思路,甚至怀疑JS是否做不出来这种逼真的效果来。终于看到Echarts中提供了这个功能。下面就扒开她绚丽的衣着,一起走进MarkPoint的世界。 数据 首先还是先看看数据上的逻辑。上图是一个数据格式,placeList包括每一个关键点的名称和坐标位置,而
该 repo 的模型或代码结构如下所示: 1. 高斯混合模型 EM 训练 2. 隐马尔可夫模型 维特比解码 似然计算 通过 Baum-Welch/forward-backward 算法进行 MLE 参数估计 3. 隐狄利克雷分配模型(主题模型) 用变分 EM 进行 MLE 参数估计的标准模型 用 MCMC 进行 MAP 参数估计的平滑模型 4. 神经网络 4.1 层/层级运算 Add Flatten Multiply Softmax 全连接/Dense 稀疏进化连接 LSTM Elman 风格的 R
数据预处理一方面是要提高数据的质量,另一方面是要让 数据更好地适应特定的挖掘技术或工具。统计发现,在数据挖掘的过程中,数据预处理工作量占到了整个过程的60%。
当我们在移动终端上滑动页面,手指离开屏幕后,页面的滚动并不会马上停止,而是在一段时间内继续保持惯性滚动,并且滑动阻尼感和持续时间与滑动手势的幅度成正比。
机械臂轨迹规划是根据机械臂末端执行器的操作任务,在其初始位置、中间路径点和终止位置之间,采用多项式函数来逼近给定路径,它是机器人学的一个重要的研究内容。关于机械臂的轨迹规划可以分为关节空间的轨迹规划和操作空间轨迹规划。在操作空间的轨迹规划概念直观,但是需要进行大量的矩阵计算,并且操作空间的参数很难通过传感器直接获得,很难用于实时控制。在关节空间的轨迹规划能够根据设计要求适时调整机械臂各关节位置、角速度和角加速度,能够有效避免机构奇异性和机械臂冗余问题。因此,面向关节空间的轨迹规划得到广泛的应用。
这种类型的插值是最基本的。我们简单地将最近的像素插值到当前像素。假设,我们从0开始索引像素的值。下面2x2图像的像素如下:{' 10 ':(0,0),' 20 ':(1,0),' 30 ':(0,1),' 40 ':(1,1)}
作者:lswbjtu https://zhuanlan.zhihu.com/p/51131210
熟悉数据挖掘和机器学习的小伙伴们都知道,数据处理相关的工作时间占据了整个项目的70%以上。数据的质量,直接决定了模型的预测和泛化能力的好坏。它涉及很多因素,包括:准确性、完整性、一致性、时效性、可信性和解释性。而在真实数据中,我们拿到的数据可能包含了大量的缺失值,可能包含大量的噪音,也可能因为人工录入错误导致有异常点存在,非常不利于算法模型的训练。数据清洗的结果是对各种脏数据进行对应方式的处理,得到标准的、干净的、连续的数据,提供给数据统计、数据挖掘等使用。
云朵、山脉、泥土、树木都是大自然的鬼斧神工,但如何使用计算机模拟出这些自然界的纹理呢?你可能猜不到,我们可以通过噪声来实现。噪声,是一种图像算法,主要用来模拟生成各种纹理。噪声在生成艺术中扮演着重要角色,开发者通过各种噪声的组合,帮助艺术家完成作品。 艺术家的作品(图片来自 https://northloop.org/event/black-history-month/) Perlin 噪声的发明者 Ken Perlin 在 1980年的时候被安排给电影 Tron 生成更真实的纹理,最终他通过一些噪声实现
先将高维的原始数据映射到一个低维特征空间,然后从低维特征学习重建原始的数据。一个AE模型包含两部分网络:
在深度学习项目中,寻找数据花费了相当多的时间。但在很多实际的项目中,我们难以找到充足的数据来完成任务。
基础篇 书推荐:《用python做科学计算》 扩展库 简介 Numpy数组支持,以及相应的高效处理函数 Scipy矩阵支持,以及相应的矩阵数值计算模块 Matplotlib强大的数据可视化工具、作图库 Pandas强大、灵活的数据分析和探索工具 StatsModels 统计建模和计量经济学,包括描述统计、统计模型估计和推断 Scikit-Learn支持回归、分类、聚类等的强大机器学习库 Keras深度学习库,用于建立神经网络以及深度学习模型 Gensim 文本主题模型的库,文本挖掘用 ----- 贵阳大
【导读】本文是工程师Irhum Shafkat的一篇博文,主要梳理了变分自编码器的相关知识。我们知道,变分自编码器是一种生成模型,在文本生成、图像风格迁移等诸多任务中有显著的效果,那么什么是变分自编码
如果你学习SIFI得目的是为了做检索,也许 OpenSSE 更适合你,欢迎使用。
图像处理(以及机器视觉)在学校里是一个很大的研究方向,很多研究生、博士生都在导师的带领下从事着这方面的研究。另外,就工作而言,也确实有很多这方面的岗位和机会虚位以待。而且这种情势也越来越凸显。那么图像处理到底都研究哪些问题,今天我们就来谈一谈。图像处理的话题其实非常非常广,外延很深远,新的话题还在不断涌现。下面给出的12个大的方向,系我认为可以看成是基础性领域的部分,而且它们之间还互有交叉 1、图像的灰度调节 图像的灰度直方图、线性变换、非线性变换(包括对数变换、幂次变换、指数变换等)、灰度拉伸、灰度均衡、直方图规定化等等)。 例如,直方图规定化(代码请见http://blog.csdn.net/baimafujinji/article/details/41146381)
https://proceedings.icml.cc/static/paper_files/icml/2020/1185-Paper.pdf
我们在之前的着色里面说过如何给物体上纹理,就是对于已经光栅化的屏幕点,就是每个像素的中心,去寻找对应纹理的映射位置的纹理颜色,去改变这个反射模型的反射系数kd
机器之心报道 编辑:袁铭怿、杜伟 除了生成图像,Stable Diffusion玩音乐也不在话下。 你听说过 Stable Diffusion 吧?它是一个从文本生成图像的开源人工智能模型,可以生成「骑马的宇航员」。 现在,Stable Diffusion 模型经过调试可以生成声谱图了,如下动图中的放克低音与爵士萨克斯独奏。 更神奇的是,这个声谱图可以转换成音频片段。 这就是今天要介绍的 Riffusion 模型,它是由 Seth Forsgren 和 Hayk Martiros 出于个人爱好而创建一个
主题 数据预处理 一、数据清洗 主要是删除原始数据集中无关的数据、重复的数据,平滑噪声数据,筛选掉与挖掘主题无关的数据,处理异常值缺失值等操作 1. 缺失值处理 主要分为3类:删除记录、数据插补、不处理 数据插补的办法: 1)均值/中位数/众数插补 2)使用固定值:将缺失的值用一个常数表示 3)最近临插补:在记录中找到与缺失样本最接近的样本来进行插补 4)回归方法:剔除缺失的记录,根据其他样本数据建立拟合模型预测缺失 5)插值法 2. 异常值处理 常用的处理办法包括: 1)删除含有异常值的记录 2
今天的算法是插值,细分是牛顿插值。关于插值可能大家听到最多的就是图像插值,比如100元的摄像头有4K的分辨率???其实这里就是使用的插值算法,通过已经有的数据再生成一些,相当于提升了数据的量。如果我们想放大图像,我们需要使用过采样算法来扩展矩阵。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
本文总结了常用的数学模型方法和它们的主要用途,主要包括数学和统计上的建模方法,关于在数学建模中也挺常用的机器学习算法暂时不作补充,以后有时间就补。至于究竟哪个模型更好,需要用数据来验证,还有求解方法也不唯一,比如指派问题,你可以用线性规划OR动态规划OR整数规划OR图与网络方法来解。
这一章介绍了计算机动画相关的内容, 主要介绍了动画的基本概念, 动画之间的插值, 几何变形, 角色动画, 物理动画, 生成式动画和对象组动画这几个领域, 这些领域书中都只介绍了最基础的内容, 想要深入了解某个领域的话必须阅读其它资料.
本文提供了与SRCNN论文的总结和回顾,如果你对于图像的超分辨率感兴趣,一定要先阅读这篇论文,他可以说是所有基于深度学习的超分辨率模型的鼻祖
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第27章 FFT的示波器应用 特别声明:本章节内容整理自
数字图像,又称为数码图像或数位图像,是二维图像用有限数字数值像素的表示。数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用数字计算机或数字电路存储和处理的图像。
来源:DeepHub IMBA本文约1800字,建议阅读5分钟本文将介绍CNN 如何用于单图像超分辨率(SISR)。 本文提供了与SRCNN论文的总结和回顾,如果你对于图像的超分辨率感兴趣,一定要先阅读这篇论文,他可以说是所有基于深度学习的超分辨率模型的鼻祖。 卷积神经网络通常用于分类,目标检测,图像分割等与某些与图像有关的问题中。 在本文中,将介绍CNN 如何用于单图像超分辨率(SISR)。这有助于解决与计算机视觉相关的各种其他问题。在CNN出现之前,传统的方法是使用最近邻插值、双线性或双三次插值等上采
该文是香港理工大学张磊老师及其学生在图像增强领域的又一颠覆性成果。它将深度学习技术与传统3DLUT图像增强技术结合,得到了一种更灵活、更高效的图像增强技术。所提方法能够以1.66ms的速度对4K分辨率图像进行增强(硬件平台:Titan RTX GPU)。
首先是监听按下鼠标,我们记录好此时鼠标的位置,作为路径的起点,并记录此时是 “拖拽状态”。
“强基固本,行稳致远”,科学研究离不开理论基础,人工智能学科更是需要数学、物理、神经科学等基础学科提供有力支撑,为了紧扣时代脉搏,我们推出“强基固本”专栏,讲解AI领域的基础知识,为你的科研学习提供助力,夯实理论基础,提升原始创新能力,敬请关注。
领取专属 10元无门槛券
手把手带您无忧上云