企业降本增效是越来越热门的话题,除去较为粗暴的“毕业”之外,企业还可以在许多地方下功夫,例如降低大数据成本、营销成本、运营成本等等。在 ArchSummit 全球架构师峰会深圳站上,我们邀请了货拉拉大数据架构负责人王海华,他为我们分享了《货拉拉基于混合云的大数据成本管控体系建设实践》,本文为其演讲整理,期待你可以有所收获。 大家好,我是王海华,货拉拉基础架构负责人,我将从以下几方面展开分享。首先是背景与挑战;其次是大数据成本管理体系;接着是存储成本优化和计算成本优化技术细节;最后是总结与展望。 背景与挑
有赞搜索中台作为有赞企业级搜索能力复用平台,在解决各个业务域搜索问题时是如何探索与实践的,这个过程中有哪些心得,本文与大家一起分享探讨下。
在数字化转型浪潮中,如何存储和利用好数据,是企业面临的首要问题。相比于传统互联网全面拥抱云,产业互联网在数字化转型过程中,通常第一步是利用云存储来归档数据。
二级存储旨在通过更经济、更安全的存储介质长期保留相对不关键和不活跃的数据,这些数据不需要像主存储中的数据那样频繁访问。
快手的传统离线链路和很多公司是一致的,基于 Hive做离线分层数仓的建设。在入仓环节和层与层之间是基于 Spark 或者 Hive做清洗加工和计算。这个链路有以下四个痛点:
随着企业数据越来越大,企业意识到数据是一种无形的资产,通过对企业各业务线产生的海量数据进行合理管理和有效应用,能盘活并充分释放数据的巨大价值。如果不能对海量数据进行有效管理和应用,企业堆积如山的数据给企业带来的是高昂的成本,数据就用不起来,也用不好。
现在业务系统设计中,存储设计扮演着至关重要的角色。随着数据量的爆炸性增长和业务需求的不断变化,如何高效、安全地存储和管理数据成为了每个业务系统设计必须面对的挑战。
2022年,搜狐智能媒体完成了迁移腾讯云的弹性计算项目,其中大数据业务整体都迁移了腾讯云,上云之后的整体服务性能、成本控制、运维效率等方面都取得了不错的效果,达到了预期的降本增效目标。
Western Digital 与 ATTO Technology 的长期合作基于对当今复杂企业环境的存储和数据基础设施需求的共同洞察。我们正在共同为用户准备迎接下一波性能挑战。
一、概述 数据一致性是指关联数据之间的逻辑关系是否正确和完整。问题可以理解为应用程序自己认为的数据状态与最终写入到磁盘中的数据状态是否一致。比如一个事务操作,实际发出了五个写操作,当系统把前面三个写操作的数据成功写入磁盘以后,系统突然故障,导致后面两个写操作没有写入磁盘中。此时应用程序和磁盘对数据状态的理解就不一致。当系统恢复以后,数据库程序重新从磁盘中读出数据时,就会发现数据再逻辑上存在问题,数据不可用。 二、Cache引起的数据一致性问题 引起数据一致性问题的一个主要原因是位于数据I/O路径上的各种Cache或Buffer(包括数据库Cache、文件系统Cache、存储控制器 Cache、磁盘Cache等)。由于不同系统模块处理数据IO的速度是存在差异的,所以就需要添加Cache来缓存IO操作,适配不同模块的处理速度。这些Cache在提高系统处理性能的同时,也可能会“滞留”IO操作,带来一些负面影响。如果在系统发生故障时,仍有部分IO“滞留”在IO操作中,真正写到磁盘中的数据就会少于应用程序实际写出的数据,造成数据的不一致。当系统恢复时,直接从硬盘中读出的数据可能存在逻辑错误,导致应用无法启动。尽管一些数据库系统(如Oracle、DB2)可以根据redo日志重新生成数据,修复逻辑错误,但这个过程是非常耗时的,而且也不一定每次都能成功。对于一些功能相对较弱的数据库(如SQL Server),这个问题就更加严重了。 解决此类文件的方法有两个,关闭Cache或创建快照(Snapshot)。尽管关闭Cache会导致系统处理性能的下降,但在有些应用中,这却是唯一的选择。比如一些高等级的容灾方案中(RPO为0),都是利用同步镜像技术在生产中心和灾备中心之间实时同步复制数据。由于数据是实时复制的,所以就必须要关闭Cache。 快照的目的是为数据卷创建一个在特定时间点的状态视图,通过这个视图只可以看到数据卷在创建时刻的数据,在此时间点之后源数据卷的更新(有新的数据写入),不会反映在快照视图中。利用这个快照视图,就可以做数据的备份或复制。那么快照视图的数据一致性是如何保证的呢?这涉及到多个实体(存储控制器和安装在主机上的快照代理)和一系列的动作。典型的操作流程是:存储控制器要为某个数据卷创建快照时,通知快照代理;快照代理收到通知后,通知应用程序暂停IO操作(进入 backup模式),并flush数据库和文件系统中的Cache,之后给存储控制器返回消息,指示已可以创建快照;存储控制器收到快照代理返回的指示消息后,立即创建快照视图,并通知快照代理快照创建完毕;快照代理通知应用程序正常运行。由于应用程序暂停了IO操作,并且flush了主机中的 Cache,所以也就保证了数据的一致性。 创建快照是对应用性能是有一定的影响的(以Oracle数据库为例,进入Backup模式大约需要2分钟,退出Backup模式需要1分钟,再加上通信所需时间,一次快照需要约4分钟的时间),所以快照的创建不能太频繁。 三、时间不同步引起的数据一致性问题 引起数据不一致性的另外一个主要原因是对相关联的多个数据卷进行操作(如备份、复制)时,在时间上不同步。比如一个Oracle数据库的数据库文件、 Redo日志文件、归档日志文件分别存储在不同的卷上,如果在备份或复制的时候未考虑几个卷之间的关联,分别对一个个卷进行操作,那么备份或复制生成的卷就一定存在数据不一致问题。 此类问题的解决方法就是建立“卷组(Volume Group)”,把多个关联数据卷组成一个组,在创建快照时同时为组内多个卷建立快照,保证这些快照在时间上的同步。之后再利用卷的快照视图进行复制或备份等操作,由此产生的数据副本就严格保证了数据的一致性。 四、文件共享中的数据一致性问题 通常所采用的双机或集群方式实现同构和异构服务器、工作站与存储设备间的数据共享,主要应用在非线性编辑等需要多台主机同时对一个磁盘分区进行读写。
云服务器、云数据库特惠,服务更稳,速度更快,价格更优 前往地址> 云服务器年付3折起 所有机型免费分配公网IP,50G高性能云硬盘(系统盘) 。 英特尔Ⓡ至强处理器 CPU负载无限制,利用率最高为100% 搭配网络增强,包转发能力最高可达30w 个人建站,轻量APP,企业用户等各应用场景均可适用 云数据库年付3折起 MySQL高可用版 提供备份,恢复,监控,数据迁移等产品功能 双机热备,自动容灾 采用高性能SSD硬盘 按需使用,弹性扩展 Redis 提供备份,恢复,监控,按需升级等产品功能 适用所用高
小红书使用 TiDB 历史可以追溯到 2017 年甚至更早,那时在物流、仓库等对新技术比较感兴趣的场景下应用,在 2018 年 5 月之后,我们就开始逐步铺开,延展到其他适合 TiDB 的场景中去。截止目前,小红书使用的 TiDB 节点数在 200+ 个,未来也有更大扩展空间。
数据规模大并且成熟企业中数据治理通常包含以下几个功能方面: 数据治理包括主数据管理、元数据管理、数据标准管理、数据质量管理、数据集成管理、数据资产管理、数据安全管理、数据交换管理、数据生命周期管理方面。
某游戏公司开发了个游戏APP,该公司在APP中会发布一些游戏场景、游戏角色、装备、精美皮肤等内容,玩家在线娱乐,产生充值购买等行为。 业务的构建涉及到几个端:
此款插件由丸子AHCHI开发集成,插件方便小巧,一共有四个优化菜单项,分别为网站加速优化、优化菜单、仪表盘、小工具等。
随着计算力的不断提升和智能算法的快速演进,以及云计算、物联网和人工智能与传统产业更加密集的渗透,如今的世界正在加速进入一个全新的数据时代。
DB2日志是以文件的形式存放在文件系统中,分为两种模式:循环日志和归档日志。当创建新数据库时,日志的缺省模式是循环日志。在这种模式下,只能实现数据库的脱机备份和恢复。如果要实现联机备份和恢复,必须设为归档日志模式。
对于企业来说,数据保护是将大量数据存储在云端的关键原因。最终所有数据都需要备份和归档,很多IT组织将云计算视为本地存储的最具成本效益的替代方案。 这一策略的最大问题是,本地存储的大部分数据都在与云服务
业务背景 作业帮成立于2015年,一直致力于用科技手段助力教育普惠,运用人工智能、大数据等前沿技术,为学生、老师、家长提供更高效的学习、教育解决方案,智能硬件产品等。作为大数据中台架构团队,我们一直探索利用有限的资源,较低的开发维护成本、高时效的数据更新和查询,为业务团队提供基础支持。 问题&痛点 ODS层数据就绪时间晚,DWS/ADS等上层数据和业务报表构建时间少。 作业帮ODS层表大概有几千张,TP90就绪时间大概在4点30左右,不同业务团队因工作时间不同,看数时间会有些差异,总体上来说基本都要求数
数栈是云原生—站式数据中台PaaS,我们在github和gitee上有一个有趣的开源项目:FlinkX,FlinkX是一个基于Flink的批流统一的数据同步工具,既可以采集静态的数据,也可以采集实时变化的数据,是全域、异构、批流一体的数据同步引擎。大家喜欢的话请给我们点个star!star!star!
当启用archive_mode时,通过设置archive_command将已完成的WAL段发送到归档存储。除了off,disable,还有两种模式:on,always。在正常操作期间,两种模式之间没有区别,但是当设置为always的情况下,WAL archiver在存档恢复或待机模式下也被启用。在always模式下,从归档还原或流式复制流的所有文件都将被归档(再次)。archive_mode和archive_command是单独的变量,因此可以在不更改存档模式的情况下更改archive_command。此参数只能在服务器启动时设置。当wal_level设置为minimal时,无法启用archive_mode。
全球分布式云大会是分布式云技术和商业交流的旗舰级平台,2023全球分布式云大会·北京站将于6月28日-29日正式召开,本次大会以“云智筑基”为主题,探究人工智能(AI)在大模型全新的发展风口,构建新型泛在算力网络的趋势,如何利用分布式云、分布式数据库、分布式存储、边缘云等构建新型算力网络,打造更强大的数字经济价值引擎。
之前做过一个项目,数据库存储采用的是mysql。当时面临着业务指数级的增长,存储容量不足。当时采用的措施是
字节跳动早期为了快速支持业务,对于电商流量数据采用Lambda的设计架构,由于当前电商流量数据随着建设的深入和精细化的运营,设计架构的弊端也愈发凸显。
一、iOS数据持久化方式 (1)XML属性列表(plist)归档 (2)Preference(偏好设置),本质还是通过“plist”来存储数据, 但是使用更简单(无需关注文件、文件夹路径和名称) (3)NSKeyedArchiver归档(NSCoding),可以把任何对象, 直接保存为文件的方式。 (4)SQLite3,当非常大量的数据存储时使用 (5)Core Data,就是对SQLite的封装 关于bundle路径和sandbox沙河路径: (1)bundle路径:应用程序 (APP) 在手
移动端重点是移动端,支持IOS/Android系统,包括IM App,嵌入消息功能的瓜子App,未来还可能接入客服系统。
如今,许多企业都在采用“云优先”的策略,并建议IT团队评估云存储是否是一个可以接收所有请求的可行选项。实施这种策略是可以理解的,因为云计算提供了许多好处,包括促进协作工作,提高灵活性和弹性,提供具有成本效益的数据存档,更不用说可以节省更多的成本。事实上,调研机构Gartner的Sid Nag报告说,“公共云的增长得到了支持,采用公共云的组织可以节约14%的预算。” 然而,“云优先”政策的实施仍然很慢,因为Nag还指出:“使用云服务的愿望超过实际采用率。毫无疑问,组织内部使用云服务有很大的需求,但组织仍
日志数据是典型的时序数据,因此,日志场景是时序数据库CTSDB的典型应用场景。下文主要描述如何用CTSDB搭建日志系统。
《一个海量在线用户即时通讯系统(IM)的完整设计》(以下称《完整设计》)这篇文章发出来之后有不少读者咨询问题,提出意见或建议。主要集中在模块拆分、协议、存储等方面。针对这些问题做个简单说明。
kafka是一个分布式消息系统,由linkedin使用scala编写,用作LinkedIn的活动流(Activity Stream)和运营数据处理管道(Pipeline)的基础。具有高水平扩展和高吞吐量。
当Oracle写数据文件遇到错误时,该如何应对呢?是离线文件还是崩溃实例?这个简单问题的技术变化跨度超过了20年。 自Oracle 11.2.0.2版本开始,一个新的隐含参数 - _datafile_write_errors_crash_instance 被引入到数据库中,通过这个参数名就可以了解到其含义:当发生数据文件写错误时,Crash数据库实例。 为什么要引入这个参数呢?这个参数后台解决的是什么问题呢?我在《数据安全警示录》一书上曾经写过多个案例,在归档模式下当发生文件(非SYSTEM文件)写错误
从整体的资源角度看,有赞数据中台机器数量在 1500 台左右,其中大部分是物理机,也有一部分是虚拟机,同时有 100 个左右的应用、4 万个核,数据规模在 15 PB 左右。
腾讯云数据中心的建设,是符合国际ISO标准,以及国内的可信云、信息安全等级保护三级标准,这为数据中心的稳定运行以及安全提供了可靠依据。
时光如白驹过隙,坐在时代的列车里,我们一路向前;近三十年来,无数事物在车窗前掠影而过,一度流行,又一度黯淡。磁带,就是一个时代的符号。彼时,磁带因其低廉、可靠及易用等特性,一度成为音乐最主流的载体,将流行音乐传遍大街小巷。后来,随着 CD 和 MP3走进大众视野,磁带逐步退出历史舞台。如今,磁带作为音乐载体早被时代淘汰.....但磁带作为存储载体,近几十年却从未过时:在冷数据场景,磁带存储凭借其极低的成本和极长的寿命,在企业存储市场始终占有一席之地。今天的故事就此展开,来聊聊腾讯的深度归档存储与磁带的那些事。欢迎阅读~
如今数据都在增长,SAP 数据也不例外。根据SNP对300多个SAP系统的分析,每年的数据增长在20%-40%之间。当某些企业未能将旧的 SAP 数据归档、数据保留和数据管理实施到标准 IT 流程中时,数据增长甚至更快。通常,归档不遵循云优先和数据分析策略,这会增加维护成本。
SAP系统已经存在了几十年,与大多数本地(Hadoop)或基于云的(Google, Azure, AWS)数据湖不同。这就是为什么经常要存档大量SAP历史数据的原因。这带来了一个挑战——历史SAP归档解决方案以压缩格式将数据存储在基于文件的存储中,很难将这些数据集成到企业数据湖中,更不用说运行实时分析、机器学习算法或从中创造商业价值。
随着互联网技术的日新月异,内容数据逐渐在各行业的业务中占据更重要的地位。日常的业务过程中,需要处理的大量电子文档、图片、音频、视频等,都属于内容数据范畴。
多云是指企业使用两个或更多的公有云 IaaS 供应商。广义来看,混合云也在其范畴。多云架构有如下优势:
IMAP全称是Internet Message Access Protoco,这是一种邮件协议,允许邮件客户端如QQ邮箱、163邮箱、腾讯企业邮通过IMAP协议从邮件服务器上获取邮件信息。
之前的文章“ 时间序列数据和MongoDB:第一部分 - 简介 ”中,介绍了时间序列数据的概念,然后介绍了一些常见问题,可用于帮助收集时间序列应用程序。这些问题的答案有助于指导支持大批量生产应用程序部署所需的架构和 MongoDB 数据库配置。现在,我们将重点介绍两种不同的模式设计如何影响读取,写入,更新和删除操作下的内存和磁盘利用率。
国内的疫情逐渐散去,复工复产成了大家的新焦点。以新基建为代表的新一轮建设高潮也徐徐拉开大幕,在如此背景之下我们的入门级存储也悄然迎来了2大新机遇, “消费升级”和 “高大智”(高性能计算、大数据和人工智能)的普及,接下来我们就分两期和各位看官细细道来。
关于腾讯轻量与深度归档配合的文章很早就想写了,早期轻量的下行是超千兆的,但是因为前段时间腾讯云调整了入网带宽的策略,顿时感觉这个用法不太合适就搁置了。昨天的时候朋友给我发说对于轻量的入网策略变化了,国内区域入网从原来的 10Mbps 上升到了 100Mbps,于是把这个翻出来还是把它写完吧~
数据猿导读 大数据从2015年开始就已经在Gartner的技术成熟度曲线图上消失了。这表明,对大数据概念的炒作已经进入了尾声,大数据已经融入到了各行各业中,企业不仅仅关注概念,而是更加关注数据如何结合
微信用于个人社交,产品设计上,在线状态,强制已读回执都有可能暴露个人隐私,故微信并无相关功能。
在任何时间,PostgreSQL在数据集簇目录的pg_wal/子目录下都保持有一个预写式日志(WAL)。这个日志存在的目的是为了保证崩溃后的安全:如果系统崩溃,可以“重放”从最后一次检查点以来的日志项来恢复数据库的一致性。该日志的存在也使得第三种备份数据库的策略变得可能:我们可以把一个文件系统级别的备份和WAL文件的备份结合起来。当需要恢复时,我们先恢复文件系统备份,然后从备份的WAL文件中重放来把系统带到一个当前状态。这种方法比之前的方法管理起来要更复杂,但是有其显著的优点:
GitHub 宣布,为了把开源软件留给子孙后代,将在 2020 年 2 月 2 日为所有公共存储库生成快照,保存在北极一个地下 250 米的废弃煤矿,快照储存在胶片上,寿命高达 1000 年。
领取专属 10元无门槛券
手把手带您无忧上云