首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

离线数据仓库平台设计

离线数据仓库平台是一种用于存储、管理和分析大量历史数据的解决方案。它通常用于数据分析、报告、商业智能和数据挖掘等领域。离线数据仓库平台的设计需要考虑数据的可扩展性、性能、可靠性和安全性。

在离线数据仓库平台的设计中,数据存储是一个关键的组成部分。数据存储通常使用分布式文件系统或大数据存储系统,如Hadoop HDFS、Amazon S3等。这些系统可以存储大量的数据,并且可以通过横向扩展来提高存储容量和性能。

数据处理是离线数据仓库平台的另一个关键组成部分。数据处理通常使用大数据处理框架,如Apache Hadoop、Apache Spark、Apache Flink等。这些框架提供了强大的数据处理能力,可以实现数据的清洗、转换、聚合、join等操作。

在离线数据仓库平台的设计中,数据安全性也是一个重要的考虑因素。数据安全性可以通过数据加密、访问控制、审计日志等方式来保证。此外,还需要考虑数据的备份和恢复策略,以防数据丢失或损坏。

总之,离线数据仓库平台的设计需要综合考虑数据的存储、处理、安全性等方面的需求。在实际应用中,可以根据具体的业务场景和需求,选择合适的技术和工具来构建高效、可靠、安全的离线数据仓库平台。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

从0建设离线数据仓库

(我是谁,我从哪里来,我到哪里去) Inmon将数据仓库定义为:在企业管理和决策中面向主题的、集成的、与时间相关的、不可修改的数据集合。数据仓库的目标:数据资产、决策信息。...系统层面 etl过程:打通你的任督二脉(离线+实时),让数据在整个环节中流通起来 数据分层:一套(低耦合、高内聚)的层级,是十分重要的。...、元数据管理、信息安全管理 走向服务:对外api服务/自助查询平台/OLAP分析平台 实时数仓:有机会再写 协作层面 与后端开发协同:上游依赖,需要有一个良好的通道,保证信息共享和联动响应 与分析/业务握手...当上层业务发生变化时,通过数据模型,底层的技术实现可以非常轻松的完成业务的变动,从而达到整个数据仓库系统的灵活性。 帮助数据仓库系统本身的建设。...,做出相应的技术调整 | 针对模型的性能考虑,对特定平台作出相应的调整 | 针对管理的需要,结合特定的平台,做出相应的调整 | 生成最后的执行脚本,并完善 建模方法及实施 建模的方法论,当前主流的Immon

2.4K71

Hadoop离线数据分析平台实战——390DimensionConverter相关服务设计Hadoop离线数据分析平台实战——390DimensionConverter相关服务设计

Hadoop离线数据分析平台实战——390DimensionConverter相关服务设计 DimensionConverter类作用&问题 DimensionConverter主要是对维度信息进行操作..., 包括维度id的获取、维度信息的保存等操作,通过该接口提供的服务, 我们可以很方便的将操作维度表的方法进行模块化设计。...问题:当设计成为多个reducer的时候,每个reducer的输出是在不同的jvm中的, 所以就会有不同的实例对象进行操作维度表, 可能会导致数据库数据异常,针对这种情况, 故我们需要将DimensionConverter...相关服务进行模块化设计

607100
  • 神盾推荐——离线算法平台

    离线算法平台是神盾产品化中负责训练离线算法模型,并出库模型和特征到线上推荐的模块,最小训练粒度为小时级。同时,离线算法平台还整合了离线批量打分、文本内容理解与特征工程等针对特定需求的功能。...一、离线算法平台简介 算法+特征是推荐的基础,自然也是离线算法平台的两个核心模块。 离线算法平台算法库,提供了LR、CF、XGBoost、FM等多个算法模型,并且为部分算法提供了不同的优化器。...离线算法平台的各个模块组成如下图所示。 ?...Tips:神盾离线算法平台的的特征自动化构造是一个由离线平台任务调度管理且完全独立的lz任务,因此文本处理可以作为一个独立使用的工具哦,而不一定必须注册特征到离线算法平台。...,意味着算法人员可以基于离线平台的输出数据开发自己独有的算法,甚至是只使用离线平台的特征引擎接口输出数据,对接到其他机器学习系统的训练模型。

    6.4K80

    数据仓库设计规范

    以下是常用的数据仓库术语,请按照需求创建schema名字,其中DWH与DWE不是数据仓库的术语 名词 名词简称 名词解释 Data Warehouse DW 数据仓库主体 Operational Data...Data Warehouse History DWH 该层不在数据仓库设计的范围之内,按照业务新增的数据层,主要储存历史数据。...Data Warehouse Exception DWE 该层不在数据仓库设计的范围之内,按照业务新增的数据层,主要储存异常数据。...Enterprise Data Warehouse EDW 作为企业唯一的数据仓库,EDW提供统一的数据服务,查询结果有效一致。数据设计支持跨部门,支持海量数据,并支持大量的查询请求。...生产报表,也支持adhoc查询,数据反范式设计。 Data Lake Database DLD 该层存储非加工数据,比如日志、视频等,以后结构化数据,并且不分类,没有为了特定程序进行设计和加工。

    1.9K00

    数据仓库设计规范

    Data Warehouse Detail DWD 数据源的细节层,有的也称为ODS层,是业务层与数据仓库的隔离层,在该层可以把业务表分的更细 Data Warehouse Base DWB 数据仓库基础数据层...Data Warehouse History DWH 该层不在数据仓库设计的范围之内,按照业务新增的数据层,主要储存历史数据。...Data Warehouse Exception DWE 该层不在数据仓库设计的范围之内,按照业务新增的数据层,主要储存异常数据。...Enterprise Data Warehouse EDW 作为企业唯一的数据仓库,EDW提供统一的数据服务,查询结果有效一致。数据设计支持跨部门,支持海量数据,并支持大量的查询请求。...生产报表,也支持adhoc查询,数据反范式设计。 Data Lake Database DLD 该层存储非加工数据,比如日志、视频等,以后结构化数据,并且不分类,没有为了特定程序进行设计和加工。

    54810

    数据仓库之Hive快速入门 - 离线&实时数仓架构

    数据仓库VS数据库: 数据库是面向事务的设计数据仓库是面向主题设计的 数据库一般存储在线交易数据,数据仓库存储的一般是历史数据 数据库设计是避免冗余,采用三范式的规则来设计数据仓库设计是有意引入冗余...,采用反范式的方式来设计 OLTP VS OLAP: 联机事务处理OLTP是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易 联机分析处理OLAP是数据仓库系统的主要应用,支持复杂的分析操作...,为海量数据的离线分析设计的,不支持OLTP(联机事务处理所需的关键功能ACID,而更接近于OLAP(联机分析技术)),适给离线处理大数据集。...数据更新 Hive是针对数据仓库应用设计的,而数仓的内容是读多写少的,Hive中不支持对数据进行改写,所有数据都是在加载的时候确定好的。而数据库中的数据通常是需要经常进行修改的。...离线数仓: 离线数据仓库主要基于Hive等技术来构建T+1的离线数据 通过定时任务每天拉取增量数据导入到Hive表中 创建各个业务相关的主题维度数据,对外提供T+1的数据查询接口 离线数仓架构: 数据源通过离线的方式导入到离线数仓中

    4.3K51

    数据仓库中的模型设计

    个人感觉,很多模型的设计都在同构化,而且在工作中也不是单独地用一种模型,会根据业务场景做出各种取舍。...一、范式模型 范式是数据库逻辑模型设计的基本理论,一个关系模型可以从第一范式到第五范式进行无损分解。在数据仓库的模型设计中目前一般采用第三范式。...我们提到的范式模型由数据仓库之父 Inmon 提倡 ,可以大致地按照OLTP设计中的3NF来理解,它在范式理论上符合3NF,它与OLTP系统中的3NF的区别在于数据仓库中的3NF上站在企业角度面向主题的抽象...三、Data Vault Data Vault 是 Dan Linstedt 发起创建的一种模型方法论,现在应该叫做Data Vault 2.0了,它也是一套完整的数据仓库理论,其中也有专门的一部分关于数据模型设计...关于数据模型,个人感觉在实际的场景中会有很多个性化的设计,有时候还不得不做一些反模式的设计。模型很重要,业务场景也很重要。

    2.4K20

    Greenplum 实时数据仓库实践(2)——数据仓库设计基础

    2.4.3 数据集市设计 2.5 数据仓库实施步骤 2.6 小结 本篇首先介绍关系数据模型、多维数据模型和Data Vault模型这三种常见的数据仓库模型和与之相关的设计方法,然后讨论数据集市的设计问题...2.5 数据仓库实施步骤 实施一个数据仓库项目的主要步骤是:定义项目范围、收集并确认业务需求和技术需求、逻辑设计、物理设计、从源系统向数据仓库装载数据、使数据可以被访问以辅助决策、管理和维护数据仓库...在数据仓库设计的初始阶段,需要确定数据源有哪些、数据需要做哪些转换以及数据的更新频率是什么。 3. 逻辑设计 定义了项目的范围和需求,就有了一个基本的概念设计。...下面就要进入数据仓库的逻辑设计阶段。逻辑设计过程中,需要定义特定数据的具体内容,数据之间的关系,支持数据仓库的系统环境等,本质是发现逻辑对象之间的关系。...实施一个数据仓库项目的主要步骤是:定义范围、确认需求、逻辑设计、物理设计、装载数据、访问数据、管理维护。

    1.8K30

    数据仓库(07)数仓规范设计

    规范设计在这里取《大数据之路:阿里巴巴大数据实践》中的定义,这里记录一下本人对这一块自己的理解。...一般的规范设计包含一下几个方面:划分和定义数据域、业务过程、维度、度量 原子指标、修饰类型、修饰词、时间周期、派生指标。 数据域:指面向业务分析,将业务过程或者维度进行抽象的集合。...需要数据仓库资料可以点击这个领取数据仓库(13)大数据数仓经典最值得阅读书籍推荐 参考资料:数据仓库(01)什么是数据仓库,数仓有什么特点数据仓库(02)数仓、大数据与传统数据库的区别数据仓库(03)...数仓建模之星型模型与维度建模数据仓库(04)基于维度建模的数仓KimBall架构数据仓库(05)数仓Kimball与Inmon架构的对比数据仓库(06)数仓分层设计数据仓库(07)数仓规范设计数据仓库(...08)数仓事实表和维度表技术 数据仓库(09)数仓缓慢变化维度数据的处理数据仓库(10)数仓拉链表开发实例数据仓库(11)什么是大数据治理,数据治理的范围是哪些数据仓库(12)数据治理之数仓数据管理实践心得数据仓库

    55330

    一篇文章搞懂数据仓库数据仓库规范设计

    目录 一、为什么要进行规范设计?...二、设计规范 - 指标 三、命名规范 - 表命名 3.1 常规表 3.2 中间表 3.3 临时表 3.4 维度表 四、开发规范 五、流程规范 ---- 一、为什么要进行规范设计? 无规矩、不方圆。...一个良好的规范设计,应当起到以下作用:提高开发效率,提升质量,降低沟通对齐成本,降低运维成本等。...下面小编将带领大家盘一盘数据仓库有哪些规范,从中挑选几个重点细说: 设计规范             逻辑架构、技术架构、分层设计、主题划分、方法论  命名规范             各层级命名、任务命名...有没有检查分区键值为NULL的情况11DQC质量监控规则是否配置,严禁棵奔12代码中有没有进行适当的规避数据倾斜语句13Where条件中is null语句有没有进行空字符串处理 五、流程规范 根据阿里流程规范,本文将数据仓库研发流程抽象为如下几点

    84520

    数据仓库(06)数仓分层设计

    目前主流的数据仓库分层大多为四层,也有五层的架构,这里介绍基本的四层架构。 分别为数据贴源层(ods)、数据仓库明细层(dw)、多维明细层(dws)和数据集市层(dm)。   ...数据仓库明细层(dw):这一层存放的是一致的、准确的、干净的数据,即对源系统数据进行了清洗(去除了杂质)后的数据。一层一般来说是按照维度建模抽取的明细数据。通常是星形或雪花结构的数据。...需要数据仓库资料可以点击这个领取数据仓库(13)大数据数仓经典最值得阅读书籍推荐 参考资料:数据仓库(01)什么是数据仓库,数仓有什么特点数据仓库(02)数仓、大数据与传统数据库的区别数据仓库(03)...数仓建模之星型模型与维度建模数据仓库(04)基于维度建模的数仓KimBall架构数据仓库(05)数仓Kimball与Inmon架构的对比数据仓库(06)数仓分层设计数据仓库(07)数仓规范设计数据仓库(...08)数仓事实表和维度表技术 数据仓库(09)数仓缓慢变化维度数据的处理数据仓库(10)数仓拉链表开发实例数据仓库(11)什么是大数据治理,数据治理的范围是哪些数据仓库(12)数据治理之数仓数据管理实践心得数据仓库

    72020

    数据仓库专题(3)-分布式数据仓库事实表设计思考

    一、前言   最近在设计数据仓库的数据逻辑模型,考虑到海量数据存储在分布式数据仓库中的技术架构模式,需要针对传统的面相关系型数据仓库的数据存储模型进行技术改造。...设计出一套真正适合分布式数据仓库的数据存储模型。 二、事实表设计基础       事实表记录发生在现实世界中的操作型事件,其所产生的可度数值。...事实表的设计完全依赖于物理活动,不受可能产生的最终报表的影响。事实表中,除数字度量外,事实表总是包含外键,用于关联与之相关的维度,也可以包含退化的维度键和日期/时间戳。...三、传统模式   以FS-LDM数据存储模型Event主题域数据存储模型设计为例,其事件主题域数据逻辑模型结构如下图所示: ?    ...分布式数据仓库设计,恰恰相反,因为单表数据规模的问题,如果要满足分析和处理的性能,合理的按照业务进行数据的分表存储。如财务相关事件、账户相关事件,单独成表。更有利于数据的计算和分析。

    96730

    # Hadoop离线数据分析平台实战——230项目数据存储结构设计Hadoop离线数据分析平台实战——230项目数据存储结构设计

    Hadoop离线数据分析平台实战——230项目数据存储结构设计 数据存储设计 在本次项目中设计到数据存储的有三个地方: 第一个就是将原始的日志数据按天保存到hdfs文件系统中; 第二个就是将etl解析后的数据保存到...MySql维度信息表设计 根据我们最终统计的维度信息来看,我们分别需要创建以下八个维度表: 平台维度(platform),时间维度(date),浏览器维度(browser),地域维度(location...设计表名为: stats_device_browser stats_device_browser表结构 列名 类型 默认值 描述 platform_dimension_id int(11) 非空,0 平台...设计表名为: stats_view_depth 列名 类型 默认值 描述 platform_dimension_id int(11) 非空,0 平台id,pkey date_dimension_id int...表名设计为:stats_order stats_order表结构 列名 类型 默认值 描述 platform_dimension_id int(11) 非空,0 平台id,pkey date_dimension_id

    1.1K110

    百度、阿里、腾讯平台架构都熟悉,小米大数据平台架构OLAP架构演进是否了解

    小米大数据平台OLAP架构演进 一、数据仓库 1、离线数据仓库的架构 数据仓库一般架构 分析型系统进行联机数据分析,一般的数据来源是数据仓库,而数据仓库的数据来源为可操作型系统,可操作型 系统的数据来源于业务数据库中...2、维度数据建模 维度数据建模主要应用于数据仓库设计,维度模型是一种进行查询的设计技术。 维度建模中两个核心概念是事实表和维度表。     1....批量处理、吞吐量大 流式处理,吞吐量较低 数据模型 星型、雪花等 宽表、轻微汇总等 6、实时数仓与离线数仓的对比 从架构上来说,离线数据仓库与实时数据仓库有着较为明显的差别,离线数据仓库主要以传统大数据架构体系进行设计为主...,而实时数据仓库主要以 Kappa 架构设计思想为主,介于这两种架构之间有一种中间态就是 Lambda 架构。    ...三、小米整体架构模型演进 1、小米整体架构 – 离线架构1.0 离线架构的目标是设计出一个能满足离线数据分析的大数据架构,参考下图离线架构流程: 首先业务数据(比如订单、店铺数据)或者埋点(手机 app

    1.4K10
    领券