关于声音的需求,从始至终,都是很刚需的需求 。从语音芯片的演化就能看出很多的端倪,很多很多的产品他必须要有语音,才能实现更好的交互。而语音芯片的需求分类,其实也是很好理解的,从市场上常用的芯片产品特性,大概就能归类如下:
终于有时间更新语音识别系列了,之前的几篇: 语音识别系列︱用python进行音频解析(一) 语音识别系列︱paddlehub的开源语音识别模型测试(二) 语音识别系列︱paddlespeech的开源语音识别模型测试(三)
2012 年,在深度学习技术的帮助下,语音识别研究有了极大进展,很多产品开始采用这项技术,如谷歌的语音搜索。这也开启了该领域的变革:之后每一年都会出现进一步提高语音识别质量的新架构,如深度神经网络、循环神经网络、长短期记忆网络、卷积神经网络等等。然而,延迟仍然是重中之重:自动语音助手对请求能够提供快速及时的反应,会让人感觉更有帮助。
INTERFACE 分享者:陈伟、李健涛 机器之心报道 参与:李泽南 3 月 12 日,搜狗正式在线上平台发布了「旅行翻译宝」。这款随身翻译设备结合了搜狗神经网络机器翻译、语音识别、图像识别等多项技术,不仅支持语音、图像翻译等多种翻译模式,还提供中英日韩俄德等 18 种语言互译。 在深度学习快速发展的今天,机器翻译系统的能力究竟达到了什么样的水平?机器翻译是否已经可以代替人类翻译?3 月 17 日,机器之心与搜狗共同举办的 INTERFACE 线下分享中,搜狗语音交互技术中心研发总监陈伟、搜狗 IOT 事
时至今日,语音识别已经有了突破性进展。2017年8月20日,微软语音识别系统错误率由5.9%降低到5.1%,可达到专业速记员的水平;国内语音识别行业的佼佼者科大讯飞的语音听写准确率则达到了95%,表现强悍。国内诸如阿里、百度、腾讯等大公司,也纷纷发力语音识别,前景一片看好。
“AI+IoT”将是未来的风口,各种应用和商机将成井喷式增长,国内外各大互联网巨头早已提前布局AI+IoT的战略,这同时也是恩智浦的核心战略之一。AI+IoT技术的应用,大到汽车和电视,小到灯泡、闹钟,都可以使用AI的控制技术。
前几天在Python白银交流群【云何应住】问了一个Python处理语音消息识别的实战问题。问题如下:
这次出手的,又是谷歌 AI 团队。刚刚,他们为旗下的一款手机输入法 Gboard (不要跟谷歌拼音输入法搞混了啊~)上线了新功能:离线语音识别。目前这一新功能,只能在其自家的产品 Pixel 系列手机上使用。
识别延迟一直是设备端语音识别技术需要解决的重大问题,谷歌手机今天更新了手机端的语音识别技术——Gboard,重磅推出了一款端到端、全神经、基于设备的语音识别器,支持Gboard中的语音输入。通过谷歌最新的(RNN-T)技术训练的模型,该模型精度超过CTC,并且只有80M,可直接在设备上运行。
作者 | 陈孝良 责编 | 胡永波 目前来看,语音识别的精度和速度比较取决于实际应用环境,在安静环境、标准口音、常见词汇上的语音识别率已经超过95%,完全达到了可用状态,这也是当前语音识别比较火热的原因。 随着技术的发展,现在口音、方言、噪声等场景下的语音识别也达到了可用状态,但是对于强噪声、超远场、强干扰、多语种、大词汇等场景下的语音识别还需要很大的提升。当然,多人语音识别和离线语音识别也是当前需要重点解决的问题。 学术界探讨了很多语音识别的技术趋势,有两个思路是非常值得关注的,一个是就是端到端的语音识别
中文口语语言处理国际会议ISCSLP为中文语音处理领域的知名国际会议,由国际语音交流协会中文口语处理专业委员会ISCA SIG-CSLP 主办,会上发布成果对中文智能语音的发展具有重要指导意义。
Sensory是嵌入式语音软件,或者说是边缘侧语音技术的行业和技术领导者,作为专注于边缘侧语音人工智能的厂商,Sensory可以用很多种技术方式和解决方案满足用户对隐私的关切。
AI 科技评论按:在近二十年来,尤其是引入深度学习以后,语音识别取得了一系列重大突破,并一步步走向市场并搭载到消费级产品中。然而在用户体验上,「迟钝」可以算得上这些产品最大的槽点之一,这也意味着语音识别的延迟问题已经成为了该领域研究亟待解决的难点。日前,谷歌推出了基于循环神经网络变换器(RNN-T)的全神经元设备端语音识别器,能够很好地解决目前语音识别所存在的延迟难题。谷歌也将这项成果发布在了官方博客上,AI 科技评论进行编译如下。
语音识别技术即Automatic Speech Recognition(简称ASR),是指将人说话的语音信号转换为可被计算机程序所识别的信息,从而识别说话人的语音指令及文字内容的技术。目前语音识别被广泛的应用于客服质检,导航,智能家居等领域。树莓派自问世以来,受众多计算机发烧友和创客的追捧,曾经一“派”难求。别看其外表“娇小”,内“心”却很强大,视频、音频等功能通通皆有,可谓是“麻雀虽小,五脏俱全”。本文采用百度云语音识别API接口,在树莓派上实现低于60s音频的语音识别,也可以用于合成文本长度小于1024字节的音频。 此外,若能够结合snowboy离线语音唤醒引擎可实现离线语音唤醒,实现语音交互。
语音识别技术,也被称为自动语音识别,目标是以电脑自动将人类的语音内容转换为相应的文字和文字转换为语音。
Maix-Speech是专为嵌入式环境设计的离线语音库,设计目标包括:ASR/TTS/CHAT
在波士顿的Re-Work深度学习峰会上,高通公司的人工智能研究员Chris Lott介绍了他的团队在新的语音识别程序方面的工作。
小编所在项目中,C1、C1Pro、C1Max录音笔,通过BLE和APP连接,音频文件实时传输到录音助手App端,具备实时录音转写的功能。工欲善其事必先利其器,小编补习了语音识别相关基础知识,对所测试应用的实时转写业务逻辑有了更深的认识。希望对语音测试的小伙伴们也有所帮助~~(●—●)
场景描述:在全民抗击疫情时期,做好全面的防护是重中之重。电梯按键因为必须接触使用等原因,具有很高的潜在感染传播风险。为此,一家科技公司开发了「无接触式」方案,用语音控制来完成对电梯的呼叫和使用。
文 / 陈孝良 11月16号,百度发布了渡鸦智能音箱和DuerOS开发板SoundPi,至此,国内再一名巨头加入智能音箱大战。迄今为止,国内战场上的巨头有阿里、京东、腾讯、百度、小米、科大讯飞等,国外则有苹果、微软、亚马逊、谷歌、脸书、三星等,这些巨头占据了全球市值的排名榜,同时发力争夺未来人工智能时代的语音入口,甚至亚马逊和阿里率先不惜代价开启了补贴大战。这些全球巨头的激烈竞争,将对未来十年产生极其重要的影响,同时,这更是新一波的职业快速发展机会。 语音智能当前的核心关键是声学问题和语义理解,随着市
[核心提示] 回顾地图的发展史,思考一下移动互联网时代的地图应用究竟走在了什么阶段?走进腾讯为你解读零流量地图的缘起和发展。 回顾地图的发展史,思考一下移动互联网时代的地图应用究竟走在了什么阶段?走进腾讯为你解读零流量地图的缘起和发展。 地图的缘起 如果经常去回顾一个产品的历史,就能对它有更本质更纯粹的理解。回顾一下地图的发展史,你会发现科技的进步是如此的迅速。从古代根据山海经绘制的粗糙地图,到现在的精准的电子地图,几乎是飞跃式的发展。最早的地图是圆形的,当时人类对世界地理的认知太过有限;然后地图由圆变
语音识别是AI领域的一项重要基础服务,同样也是vivo AI体系中举足轻重的能力,是Jovi输入法、Jovi语音助手等应用的基石。打造高准确率、高性能的语音识别引擎,才能给vivo亿级的语音用户带来良好的体验。基于wenet端到端语音识别工具,vivo结合自身业务场景进行深度优化,成功研发离线和流式识别引擎,支撑vivo语音业务的快速发展。
Demo视频:wukong-robot + Jetson + 3D 打印外壳打造的智能音箱(by 网友 @电力极客)
飞桨语音模型库PaddleSpeech,为开发者提供了语音识别、语音合成、声纹识别、声音分类等多种语音交互能力,代码全部开源,各类服务一键部署,并附带保姆级教学文档,让开发者轻松搞定产业级应用!
是磁带、光盘、录音笔、手机等录音工具,还是会议、访谈、沟通、演唱等场景?是键指如飞的神奇速录师,还是方便快捷的语音转文字AI小工具?
语言作为人类的一种基本交流方式,在数千年历史中得到持续传承。近年来,语音识别技术的不断成熟,已广泛应用于我们的生活当中。语音识别技术是如何让机器“听懂”人类语言?本文将为大家从语音前端处理、基于统计学语音识别和基于深度学习语音识别等方面阐述语音识别的原理。
通讯、感知与行动是现代人工智能的三个关键能力,在这里我们将根据这些能力/应用对这三个技术领域进行介绍:
作为运动相机,必须要满足运动场景下的HANDS-FREE解放双手的操作,而语音则以用户最自然的方式,赋予用户直观,强大和自然的人机交互方式。
本文主要针对中文语音识别问题,选用常用的模型进行 离线 demo 搭建及实践说明。
【编者按】由于“记忆单元”的优势,LSTM RNNs已经应用于Google、百度、科大讯飞的语音处理之中。最近,Google在其技术博客中自述了使用LSTM模型取代GMM模型实现语音转录的过程。文章尚未披露训练模型的具体步骤,但介绍了数据源的解决、建模的思想,并对目前尚未解决的问题进行解析,如错认“噪音”和转录标点符号,对希望尝试LSTM的团队有借鉴意义。 在过去的几年中,深度学习在世界计算机科学难题中表现出了卓越的成就,从图像分类、字幕添加到机器翻译,再到可视化模型技术。最近,我们宣布了在谷歌语音转录上使
据科技资讯网站zdnet(www.zdnet.com)报道,谷歌开发出了可在未联网的Nexus 5智能手机上实时运行的语音识别系统。该系统无需通过远程数据中心进行运算,所以在没有可靠网络的情况下亦可通过智能手机、智能手表或其他内存有限的电子设备使用语音识别功能。 谷歌的科研人员表示,研发该系统的目的是创建在本地运行的轻量级、嵌入式、准确度高的语音识别系统。轻量级是指这套系统仅20.3MB,而在搭载2.26GHz CPU和2GB内存的Nexus 5上测试时,系统在开放式听写任务中的错误率仅为13.5%。 当然
介绍我开发的一个开源的智能音箱项目 dingdang-robot 。 这个项目其实来源于我生活中的一个需求:我每天晚上都会去厨房做一个面包当明天的早餐,当我把用料按顺序准备好放进面包机时,我需要准确预约到明天早上我吃早餐的时间。然而,几乎每次在这个时候我都没有带手机在身边,而是都放在客厅里充电,这时只能跑去客厅看时间。虽然厨房到客厅只有几步之遥,但自己又是懒癌患者,每天都要这么来回奔波就觉得很不方便。要解决这个问题当然有很多种方法,比如直接买个小时钟放在厨房。不过我更希望“连看都不用看”,直接有人告诉我时
本文主要分享 OPPO 知识图谱建设过程中算法相关的技术挑战和对应的解决方案,主要包括实体分类、实体对齐、信息抽取、实体链接和图谱问答 query 解析等相关算法内容。
最近百度公布的数据显示,自1月25日春节假期以来,百度输入法日均语音请求量已破10亿次大关,再创行业历史新高。
高通公司人工智能研究人员表示,该公司正在研制用于智能终端的语音识别系统,通过综合采用循环神经网络和卷积神经网络,该系统语音识别准确率可达95%。
Meta此次发布的是一个翻译模型系列:Seamless Communication(无缝交流)。
世界上最受欢迎的虚拟助手有什么共同之处?它们在云中执行大部分语音识别,他们的自然语言模型利用功能强大的服务器,具有几乎无限的处理能力。它在很大程度上是可以接受的。通常,处理在几毫秒内完成,但对于没有互联网连接的用户来说是一个明显的问题。
半夜起来给小朋友冲奶粉,于是忽然想到了那个在机柜里落灰的树莓派。当时用百度的语音识别和合成用python实现了一些功能。但是并没有实现语音唤醒,于是要想实现语音唤醒就只能不断的轮询接口,然后发送到百度云进行识别。但是觉得这种方式太坑了,什么都上传了,感觉随时在被监听一样。今天又看了下百度的sdk发现支持语音唤醒了。还能自定义唤醒词。
我今天演讲主要分四个部分,第一个是分享语音识别概述,然后是深度神经网络的基础;接下来就是深度学习在语音识别声学模型上面的应用,最后要分享的是语音识别难点以及未来的发展方向。
如果你关注了昨晚(1月28日)央视八点档的《经典咏流传》就会发现,学会一首歌的时间,30秒足够了。
通常,语音识别的深度学习方法依靠强大的远程服务器进行大量处理。但是,滑铁卢大学和创业公司DarwinAI的研究人员声称已经开创了一种设计语音识别网络的策略,该策略不仅能够达到最先进的精度,而且能够生成足够强大的模型,以便在低端智能手机上运行。
点击上方“LiveVideoStack”关注我们 ▲扫描图中二维码或点击阅读原文▲ 了解音视频技术大会更多信息 编者按:在贷后催收行业中,每个公司每天的录音量可达上万小时,因此语音识别功能对其非常重要。今天LiveVideoStack大会邀请到了洞听智能的张玉腾老师,为我们介绍在坐席辅助系统中,语音与文本的碰撞。 文/张玉腾 整理/LiveVideoStack 大家好!我是青岛洞听智能的算法工程师张玉腾,我们公司在去年四月份成立。在2016年,我们已经是联信集团的一个智能化部门,一直在做语音与文本相
在近日于上海举办的2016年亚洲消费电子展(CES Asia 2016)上,无人驾驶、智能汽车等相关技术成为最大热点。在CES Asia上,搜狗地图发布了“搜狗智能导航”,最大亮点是可实现车内的全语音交互,而交互并不局限于地图导航本身,几乎可实现驾驶之外的常规车内交互,包括打电话、发短信、查天气、歌曲播放等等。这款产品可运行在智能手机上,还可通过车机互联协议使之运行于汽车屏幕,如果汽车厂商与搜狗进行前装合作则可独立运行于汽车的OS上。基于庞大的POI数据和人工智能技术,搜狗地图在国内首次实现了车内的全语音智
【AI创新者】是CSDN人工智能频道精心打造的专栏,本期主人公是云知声创始人、CTO梁家恩。 作者:王艺 CSDN AI 编辑 / 记者 投稿、采访、寻求合作请邮件至 wangyi@csdn.ne
近日谷歌团队发布了一篇关于语音识别的在线序列到序列模型,该模型可以实现在线实时的语音识别功能,并且对来自不同扬声器的声音具有识别功能。 以下内容是 AI 科技评论根据论文内容进行的部分编译。 论文摘要:生成模型一直是语音识别的主要方法。然而,这些模型的成功依赖于难以被非职业者使用的复杂方法。最近,深入学习方面的最新创新已经产生了一种替代的识别模型,称为序列到序列模型。这种模型几乎可以匹配最先进的生成模型的准确性。该模型在机器翻译,语音识别,图像标题生成等方面取得了相当大的经验成果。尽管这些模型易于训练,因为
明敏 发自 凹非寺 量子位 | 公众号 QbitAI 还记得冬奥会期间和朱广权battle的AI手语主播吗? 现在,这样的手语数字人不仅要在小荧屏上工作,还能到火车站、银行、医院这些公共场所上岗了。 喏,通过这样一台看似普通的机器,AI手语数字人就能实时将语音或文字转化为手语,让听障人士与窗口工作人员无障碍沟通,词准率在96%以上。 这就是百度智能云曦灵刚刚推出的AI手语一体机,它能够直接部署在各种服务窗口,成为工作人员的实时翻译官。 其背后支持平台——AI手语平台也同步发布,它能进行实时手语直播,还可
本文介绍了智能音箱项目的基础背景、技术架构、开发流程、以及作者的一些经验。智能音箱的用途包括播放音乐、控制家居设备、查询天气、听新闻、定闹钟等。智能音箱的语音识别和自然语言处理技术主要依赖于深度学习和自然语言处理技术。智能音箱的硬件设计需要考虑音箱的声学结构、麦克风阵列、扬声器、触摸按键等。智能音箱的软件开发流程包括需求分析、设计、编码、测试、部署等环节。智能音箱的社区包括开发者社区、用户社区、企业社区等。智能音箱的生态系统包括音乐服务、家居控制、第三方技能和服务、内容提供商等。智能音箱的市场前景广阔,将推动智能家居的发展,成为智能家居的入口。
领取专属 10元无门槛券
手把手带您无忧上云