首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

移动变体描述

是指根据不同的设备类型、屏幕尺寸、操作系统等因素,为移动应用程序提供不同的界面布局和功能展示。移动变体描述可以根据设备的特性进行自适应调整,以提供更好的用户体验。

移动变体描述的分类可以根据不同的维度进行划分,如屏幕尺寸、设备类型、操作系统等。根据屏幕尺寸,可以将移动变体描述分为手机、平板电脑和大屏幕设备等不同类型。根据设备类型,可以将移动变体描述分为iOS设备、Android设备等不同操作系统平台。根据操作系统,可以将移动变体描述分为iOS、Android、Windows Phone等不同系统。

移动变体描述的优势在于可以根据不同的设备特性进行灵活的界面布局和功能展示,提供更好的用户体验。通过移动变体描述,开发人员可以针对不同的设备类型和屏幕尺寸进行优化,确保应用程序在不同设备上的兼容性和稳定性。

移动变体描述在各种移动应用场景中都有广泛的应用。例如,在电子商务应用中,可以根据不同的设备类型和屏幕尺寸,为用户提供更适合其设备的购物界面和商品展示方式。在社交媒体应用中,可以根据不同的操作系统平台,为用户提供更符合其使用习惯的界面和功能。在游戏应用中,可以根据不同的屏幕尺寸和设备类型,为用户提供更好的游戏体验。

腾讯云提供了一系列与移动变体描述相关的产品和服务。其中,腾讯移动分析(https://cloud.tencent.com/product/mta)可以帮助开发人员了解用户在不同设备上的行为和偏好,从而优化移动变体描述。腾讯移动推送(https://cloud.tencent.com/product/tpns)可以根据用户的设备类型和操作系统,向用户推送个性化的消息和通知。腾讯移动应用安全检测(https://cloud.tencent.com/product/msd)可以帮助开发人员检测和修复移动应用中的安全漏洞和风险。

总结:移动变体描述是根据不同的设备特性,为移动应用程序提供不同的界面布局和功能展示的技术。它可以根据设备类型、屏幕尺寸、操作系统等因素进行自适应调整,以提供更好的用户体验。腾讯云提供了一系列与移动变体描述相关的产品和服务,帮助开发人员优化移动应用的界面和功能。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Bioinformatics丨GraphDTA用图神经网络预测药物靶点的结合亲和力

今天给大家介绍迪肯大学Thin Nguyen教授等人发表在Bioinformatics上的一篇文章 “GraphDTA: predicting drug–target binding affinity with graph neural networks” 。药物再利用可以避免昂贵和漫长的药物开发过程,估计新药物-靶标对相互作用强度的计算模型可加快药物的再利用,然而,以往的模型均是将药物表示为字符串,但这不是分子表示的合理方式,所以作者提出了一种新的GraphDTA模型,将药物表示为图,并使用图神经网络预测药物与靶点的亲和力。结果表明,图神经网络不仅比非深度学习模型更能预测药物靶点的亲和性,而且比其他深度学习方法更有效。

02
  • 佛罗里达州2021年春假:用Wolfram语言根据2月COVID-19数据预测3月变化

    人们普遍认为,在佛罗里达州度过2020年春假的学生和其他人帮助COVID-19在美国和其他地方广泛传播。2021年的情况在几个方面完全不同。首先,这种疾病已经在美国出现了一年多,大约30%的人口在之前的曝光中拥有抗体。另外,现在有几种疫苗在使用,在编写本报告时,有近20%的人至少接受过一次疫苗接种。(由于这两个群体有重叠,所以相信总数约占总人口的45%)。我们现在知道,16岁以下的儿童不会大量感染该病,不是该病传播的主要媒介。社会上的疏导行为都在不同程度的使用,目前全国各地的感染人数都在下降。据信,这是由于免疫力的提高和非药物干预措施(NPIs),如社交距离和口罩的使用。

    01

    基于可解释的异质相互作用图神经网络的蛋白质-配体亲和力预测

    今天为大家介绍的是来自北京大学信息工程学院、AI4S平台中心主任陈语谦教授团队发表在人工智能旗舰期刊IEEE Transactions on Pattern Analysis and Machine Intelligence(IF=23.6)的论文,博士生杨梓铎为第一作者。该论文从归纳偏好的角度探讨了深度学习模型在蛋白质-配体亲和力(Protein-Ligand Binding Affinity, PLA)预测任务中的泛化能力和可解释性。归纳偏好是指在深度学习模型中为了更好地进行学习和泛化而引入的假设或偏好。归纳偏好通过限制模型的假设空间,使其在有限的数据上更容易找到合适的模式,从而提高模型的泛化性能。模型的泛化能力及可解释性,往往取决于所使用的归纳偏好在多大程度上能够准确描述待解决的任务。因此,在PLA预测任务中,所采用的归纳偏好应符合物理化学规则,以更好地描述蛋白质-配体间的相互作用,从而提高模型的泛化能力和可解释性。

    01

    The Devils in the Point Clouds: 研究点云卷的稳健性 (CS)

    最近,人们对在不规则采样的点云上进行卷积产生了极大的兴趣。由于点云与常规栅格图像有很大的不同,因此必须更仔细地研究卷积网络的通用性,特别是它们在输入数据的尺度和旋转变化下的鲁棒性。本文研究了点云上卷积网络PointConv的不同变体,以考察其对输入尺度和旋转变化的鲁棒性。在我们探索的变体中,有两个变体是新颖的,并产生了显著的改进。第一个是用简单得多的三阶多项式替换了基于多层感知器的权重函数,同时采用了Sobolev规范化。其次,对于3D数据集,除了常规的3D坐标外,我们还利用3D几何属性作为PointConv的输入,从而推导出一种新型的观点不变的描述符。我们还探讨了激活函数、邻域和子采样方法的选择。我们在2D MNIST和CIFAR-10数据集以及3D SemanticKITTI和ScanNet数据集上进行了实验。结果显示,在2D上,使用三阶多项式极大地提高了PointConv对尺度变化和旋转的鲁棒性,甚至超过了MNIST数据集的传统2D CNN。在3D数据集上,新颖的视点不变量描述符显著提高了PointConv的性能以及鲁棒性。我们在SemanticKITTI数据集上实现了最先进的语义分割性能,在ScanNet数据集上也实现了与目前基于点的方法中最高框架的性能相当。

    04

    Nat. Commun. | 借助机器学习设计和筛选合成细胞中新兴蛋白质功能

    今天为大家介绍的是来自Petra Schwille团队的一篇论文。最近,机器学习(ML)的应用为计算蛋白质设计领域带来了惊人的进步,使得针对工业和生物医药应用的蛋白质定向工程设计成为可能。然而,为细胞核心相关的新兴功能设计蛋白质,比如能够在时空上自组织并因此构建细胞空间的能力,仍然极具挑战。虽然在生成方面,条件生成模型和多状态设计正在兴起,但对于新兴功能而言,无论是计算上还是实验上,都缺乏专门为蛋白质设计项目所需的筛选方法。在这里作者展示了如何为机器学习生成的蛋白质变体实现这种筛选,这些蛋白质变体能在细胞内形成时空模式。对于计算筛选,作者采用了一种基于结构的分而治之方法来找到最有希望的候选者,而对于随后的体外筛选,作者使用了由自下而上的合成生物学建立的合成细胞模拟体。

    01

    Nat. Biotechnol. | 从通用蛋白质语言模型中高效演化人类抗体

    今天为大家介绍的是来自斯坦福大学研究团队的一篇利用语言模型模拟人类抗体自然演化的论文。自然进化必须探索广阔的可能序列空间,以寻找稀有但理想的突变,这表明从自然进化策略中学习可以指导人工进化。在这里,作者报告了一种利用通用蛋白质语言模型能够高效演化人类抗体的方法,该方法通过提出在进化上是合理的突变来改进抗体,尽管该模型没有提供关于目标抗原、结合特异性或蛋白质结构的任何信息。作者进行了七种抗体的语言模型引导提高亲和力实验,每种抗体仅经历两轮实验进化,筛选了每种抗体的20个或更少的变种。结果显示,作者成功将四种临床相关、高度成熟的抗体的结合亲和力提高了多达七倍,将三种未成熟抗体的结合亲和力提高了多达160倍。此外,许多设计还展示出良好的热稳定性和对埃博拉病毒和严重急性呼吸综合征冠状病毒2(SARS-CoV-2)假病毒的中和活性。改善抗体结合的相同模型还可以指导不同蛋白质家族和选择压力下的高效进化,包括抗生素抗性和酶活性,这表明这些结果适用于许多情境。

    03
    领券