如今的移动应用早已不再是某种结构单一、功能简单的工具了。当我们的移动应用变得越来越庞杂,我们便会需要借用分析工具,来跟踪和分析App内的每一个部分。幸运的是,目前市面上有许多数据分析工具可供App开发
数字化的今天,各种数据处理分析工具使企业的运营效率大大提升。而商业智能BI的出现给企业带来了更多的帮助。凭借商业智能BI的数据挖局、数据分析和数据可视化等功能,企业可以提高运营效率,增加利润率,并制定更快、更明智的业务决策。下面我们来看一下国内外有哪些好用的商业智能BI软件。
通过部署和使用大数据分析工具,分析流程可以帮助公司提高运营效率,产生新的利润,获得竞争优势。企业可选择的数据分析应用程序有很多。比如描述性分析善于描述已发生的事情,揭示因果关系。描述性分析主要输出查询、报表和历史数据可视化。
如今,数据分析已成为互联网行业的热门话题,越来越多的企业都开始尝试借助数据分析工具来解决企业问题,但还有大多数抱着怀疑态度的小伙伴,盘旋在众人内心的疑问就是数据分析工具到底是做什么的?有什么作用呢?
文:傅志华 大数据的产业链从整体上可以分为四大层,包括IT基础层、数据基础层、数据应用层和数据安全层。个人认为在中国市场对于创业者来说,数据应用层的创业机会最多,想象空间也最大。 本文将重点介绍数据应
程序员现在比以往任何时候都需要数据分析工具,这里列举了几种大数据技术分析工具的介绍,加米谷大数据带大家一起来了解一下吧
随着大数据信息化时代的到来,数据分析是各行各业都绕不开的一个话题,企业在发展过程中积累了大量的数据,对这些数据进行专业的分析,能够促进企业更好更精准的发展,能够有效防范企业拍脑袋决策的经营风险。通过数据分析把看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律,够帮助管理者进行判断和决策,以便采取适当策略与行动。
现在,数据分析已经成为企业做出各种经营决策不可或缺的环节,无论是财务、市场、销售还是运营,都离不开数据分析。数据分析是将收集来的各种各样的数据进行分析,提取有用信息,对数据加以详细研究和概括总结的过程。数据分析可帮助企业作出判断,以便制定适当的经营决策。目前市面上的数据分析工具多如牛毛,笔者在此总结了三类最常用的数据分析工具,看看你用过哪一类呢?
目录 一、认识数据——产品经理与数据分析 1.1 数据的客观性 1.2 面对数据的智慧 1.3 数据分析中的误区 二、获取数据——产品分析指标和工具 2.1 网站数据指标 2.2 移动应用类数据指标 2.3 电商类数据指标 2.4 UGC类数据指标 三、分析数据——产品数据分析框架 3.1 基本分析方法 3.2 数据分析框架——AARRR 3.3 数据分析框架——逻辑分层拆解与漏斗分析 3.4 数据
1. 懂业务 从事数据分析工作的前提就是需要懂业务,即熟悉行业、公司业务及流程,甚至有自己独到见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的实用价值。 例如公司2011年的运营收入是1000万元,那么不熟业务的数据分析师看到的只是1000万这个数字,而熟悉业务的数据分析师,则看到的不仅是1000万这个数字,他还看到数字背后隐藏的信息,如1000万元是有哪几个业务收入构成,哪个业务收入占主要部分,哪个业务收入是最小占比,最高业务收入的地区又是哪个地区等信息。 这就是懂业务与不懂业
离9月15日已不足半月,由于美国的制裁,在此日之后,华为的高端麒麟芯片系列将无法制造。我们对此愤恨不已,却又无可奈何,因为国内并不掌握相关的高端制造技术。目前,在一些高端行业,我们国家确实比较落后,但我相信,在不久的将来,我们一定会赶上来并领先于世界。
我特别不喜欢装逼的产品经理,看文章也一样不喜欢华而不实的。所以督促自己写文章时,把懂的、经历过的能细就写的尽量详细;不懂的就去学,然后把整理的笔记分享出来,数据分析方面我涉入不多,内容由于缺少实战经验,会比较基础和理论,希望同样对你有帮助。
我特别不喜欢装逼的产品经理,看文章也一样不喜欢华而不实的。所以督促自己写文章时,把懂的、经历过的能细就写的尽量详细;不懂的就去学,然后把整理的笔记分享出来,数据分析方面我涉入不多,内容由于缺少实战经验,会比较基础和理论,希望同样对你有帮助。 1. 明确数据分析的目的 做数据分析,必须要有一个明确的目的,知道自己为什么要做数据分析,想要达到什么效果。比如:为了评估产品改版后的效果比之前有所提升;或通过数据分析,找到产品迭代的方向等。 明确了数据分析的目的,接下来需要确定应该收集的数据都有哪些。 2
1、明确分析的目标 做数据分析,必须要有一个明确的目的,知道自己为什么要做数据分析,想要达到什么效果。比如:为了评估产品改版后的效果比之前有所提升;或通过数据分析,找到产品迭代的方向等。 明确了数据分析的目的,接下来需要确定应该收集的数据都有哪些。 ◆ ◆ ◆ 2、收集数据的方法 说到收集数据,首先要做好数据埋点。 所谓“埋点”,个人理解就是在正常的功能逻辑中添加统计代码,将自己需要的数据统计出来。 目前主流的数据埋点方式有两种: 第一种:自己研发。开发时加入统计代码,并搭建自己的数据查询系统。 第二种
现在市面上的商业智能BI软件数不胜数,与此同时,数据可视化工具也多如牛毛,许多厂商在介绍商业智能BI软件时也在对可视化功能进行大肆宣扬。因此有些人会认为,商业智能BI软件就是对数据做可视化展现的工具,忽略了商业智能BI软件的真正意义。
随着大数据概念的提出,新兴相关数据公司也犹如雨后春笋般出现,想象一下每早与大数据创业梦想一起醒来,这确实是一种美妙的感觉。粗浅地想象一下貌似处理大数据很容易,你只需要: 1)一个使一切工序“自动化”的想法 2)一伙能够拿出一个个算法的“数据科学家” 3)数据!大量的数据! 如果你已经有了一个基本的想法,而至于那些“数据科学家”们,你通常可以在和你合伙的小伙伴们中找到他们(如果没有的话,去哈佛、耶鲁、伯克利或者纽约 大学这样的高校碰碰运气吧)。 万事具备,只欠东风,那么问题来了,该如何找到数据呢?通常
“数据运营” 有两层含义,狭义指“数据运营”这一工作岗位。它跟内容运营、产品运营、活动运营、用户运营一样,属于运营的一个分支。从事数据采集、清理、分析、策略等工作,支撑整个运营体系朝精细化方向发展。
近年来,越来越多的人选择大数据行业,只看到了大数据行业前景不错、薪资待遇不错,而且培训项目、机构众多,各大名企对于大数据人才的需求也不断上涨。 但是没有对岗位和自身进行合理评估,求职或者入职之后或许才发现其实跟自己想的也许不一样。在入行数据分析或者任何一行之前,你都要好好思考这些问题:我希望进入哪些行业呢?这行业有前景吗?需要什么样的知识结构?符合我的兴趣方向吗? 1、职业爱好:分析需求、写代码、与人沟通、探索未知是你喜欢的吗? 2、思考能力:如何根据数据推演、分析、提出解决方案,这常常需要你脑洞大开。
转行,这个话题我觉得许多朋友都非常感兴趣。毕竟工作伴随着我们的一生,也是我们的主要收入来源,任谁都希望能拥有一份高薪又有前景的工作!
随着大数据概念的提出,新兴相关数据公司也犹如雨后春笋般出现,想象一下每早与大数据创业梦想一起醒来,这确实是一种美妙的感觉。粗浅地想象一下貌似处理大数据很容易,你只需要: 1)一个使一切工序“自动化”的想法 2)一伙能够拿出一个个算法的“数据科学家” 3)数据!大量的数据! 如果你已经有了一个基本的想法,而至于那些“数据科学家”们,你通常可以在和你合伙的小伙伴们中找到他们(如果没有的话,去哈佛、耶鲁、伯克利或者纽约大学这样的高校碰碰运气吧)。 万事具备,只欠东风,那么问题来了,该如何找到数据呢?通常有以下
TA说:之前我在回答里写过,数据分析师和圣骑士职业很相似,都需要“门门通”。最近,我尝试对数据分析师的能力和工具体系进行梳理,以下内容为一家之言,仅供参考。
文章来自天善智能大数据社区 www.hellobi.com 博客专栏 陈丹奕 欢迎更多在大数据、数据分析、数据挖掘和商业智能 BI 领域的一线技术爱好者、咨询顾问、CTO等加入 www.hellobi
随着数字化的发展,实证单位和企业需要处理分析的数据量呈指数级增长,传统的数据分析工具已不能满足一些企业的需求,越来越多的企业转而寻求BI工具的帮助。现在市面上有非常多的BI工具,质量也参差不齐,笔者特此盘点了现在市面上6款常见的BI工具,以供有需要的朋友参考。(排名不分先后)
1.当我们要查数据时,技术人手不够,永远在排期。不如要了只读权限自己干,取数分析一条龙。
最开始我是被Python吸引到的,当时隐隐有点往程序员方向靠。每天下了班到家就是4小时学习,最终报某课程被收割了2000智商税。
导读:数据分析究竟是什么?需要掌握哪些技能?如何进行数据分析?本文是对于数据分析的实践与总结。
哈喽大家好,跟大家分享一个消息,我的第一本书《数据分析之道——用数据思维指导业务实战》出版了!之前也没有跟大家透露过这个消息,总想着做出来再说吧,要是一不小心没写出来呢。不过经过一年多的努力,反复修修改改,最终还是写完了这一本书。
原文:4 Lessons Learned From 4 Years Of Non-Stop Data Analysis
PyCharm是一款基于Python的集成开发环境(IDE),由JetBrains公司推出。PyCharm具有多种特色功能,如智能代码补全、调试工具、版本控制等。而PyCharm软件的独特之处在于其强大的智能提示功能,可以帮助程序员更快地编写代码,并提供便捷的调试和测试方法。本文将从PyCharm的基本操作流程、特色功能、高级操作、常用插件以及应用案例五个方面进行详细的讲解。
这一个多月以来,相信大部分人都跟小编我一样:早上打开手机的第一件事是看有关疫情的最新新闻,看今日有没有新增人数,新增了多少。眼看着数据从一开始的几十发展到现在的快8W,渐渐地数据在我们眼里就只是一串数字。
随着经济的快速增长,各个行业企业的各种客户数据信息、交易数据信息也成爆炸式增长,与此同时,数据分析人员也相应供不应求。 那么什么样的人能成为数据分析师呢?或者说数据分析师需要具备怎样的素质与能力呢?
BI是Business Intelligence的英文缩写,译作商业智能,又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
市面上的出入库软件众多,解决方式和适用场景也都不一样。本文仅以草料二维码平台为例,扫特定品类二维码,记录该品类的出入库信息,进而统计出各品类的库存数。目前草料的方案仅适用于一品一码管理模式,涵盖配件库存管理、原料库存管理等。
GrowingIO 2017年 第3本电子书 《产品经理数据分析手册》 正式上线啦 点击【阅读原文】立即下载 升级你的数据分析技能! 本文选自 GrowingIO 《 产品经理数据分析手册》 ,根据张溪梦演讲内容整理编辑;原文发于GrowingIO 博客 和公众号,授权大数据文摘发布 / 转载 。 本文作者:张溪梦, GrowingIO 创始人 & CEO,原 LinkedIn 商务分析高级总监。张溪梦先后服务过EPSON、eBay、LinkedIn 等硅谷明星企业,有着 14 年的数据分析、用户增长经
BI工具和报表工具都是现在大数据时代下用得比较多的分析工具。很多人分不清BI工具和报表工具到底有什么不同,下面,我们就从面向群体、技术架构、用途和作用效果等四个方面,详细说下它们之间有何不同。
5月13日~15日,由IEEE和浙江大学主办的第十届生物信息学与计算生物学国际会议(ICBCB 2022)顺利举行,深圳国家基因库(以下简称“国家基因库”)受邀作为协办单位参与本次会议,由国家基因库生命大数据平台(CNGBdb)搭建的时空组学数据库(STOMICS DataBase)亮相生物信息与组学数据分析论坛,获得生物信息与计算生物学领域研究人员的广泛关注。
Excel作为大家都熟悉的办公软件,特别是对每天需要接触大量数据的人来说,打开Excel的动作宛如条件反射般自然。
数字化的今天,企业各个业务系统产生数据成倍地在增长,为了处理分析大量的数据问题,很多企业都寻求商业智能BI软件的帮助。一款合适的商业智能BI软件不仅能大大地提升公司的效率,还可以帮助企业做出正确的经验决策。因此选择一款好的商业智能BI软件至关重要。笔者整理了以下10款行业内比较知名的商业智能BI软件,以供大家参考。
随着科学,技术和经济的进步,人类已经进入了信息化和大数据时代。人类生活的世界每天都在爆炸性地生成大量数据,并且面临着诸如宇宙繁星般的大量数据。如何收集,清理,整合,存储,计算,建模,训练,显示和分析数据,如挖掘黄金一样的找到有价值的数据并使用它,一直是许多公司困扰的问题。因此,为了解决这个问题并更好地分析和开发数据,大数据分析工具应运而生。
Zoho Creator低代码平台是一个强大的快速应用开发工具,专为非技术用户设计,帮助他们快速开发和部署定制化的业务应用程序。
一个得心应手的数据分析工具,是每一位从业人员做数据分析的利器。面对浩如烟海的数据,如何选择合适的数据分析工具,成为运营、产品、市场等职能部门人员的一个难题,运用用数据分析工具,企业可以整合多种渠道的数据,快速完成和完善数据分析。那么如何选择数据分析工具呢?笔者总结了以下五点供大家参考。
👆点击“博文视点Broadview”,获取更多书讯 数据分析是一门艺术。 做好数据分析不是一件容易的事情,既要了解业务,又要有数据意识和思维,还要懂得分析方法,熟练使用分析工具。 博文菌最近发现几本持续霸榜的新书和经典书,迫不及待地想要分享给大家,希望可以帮助大家掌握一套正确的数据分析体系,并熟练地应用到实际业务问题的解决中! ---- 01 ▊《数据分析之道:用数据思维指导业务实战》 李渝方 著 本书是数据分析方法论与统计学知识、编程语言及应用案例的完美结合 作者累计创作 “100+”
大数据已成为当今企业不可分割的一部分,越来越多的企业纷纷寻找熟悉大数据分析工具的人。他们都期望员工在技术方面体现能力,并展示才华和思维过程。到目前为止流行的所谓的需求技能已经不再了,如果今天还有什么比较大热的技能,那就是大数据分析。
目录: 大数据分析的五个基本方面 如何选择适合的数据分析工具 如何区分三个大数据热门职业 从菜鸟成为数据科学家的 9步养成方案 从入门到精通—快速学会大数据分析 一、大数据分析的五个基本方面 1.可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。 2.数据挖掘算法 大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格
过去,是用渠道换流量的时代,大部分的公司都将流量增长作为主要的商业模式来获取用户,运营中,基本只关注用户数、日活、月活、留存用户数等概要性数据。但中国互联网的人口红利在逐渐消失,我们慢慢发现80%的流量实则创造了20%的价值,概要性数据与企业经营的产品、用户的留存度关联性并不大。而完善商业模式的企业,能利用20%的流量创造80%的价值,深掘数据成为这其中的源动力。 互联网,从流量时代走向经济化运营 此前,中国互联网一直处于人口红利时代,企业将注重流量增长作为主要的商业模式,对于用户如何使用自家的产品,用户如
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
看过近期推文的读者,想必应该知道笔者最近在开一个数据分析常用工具对比的系列,主要是围绕SQL、Pandas和Spark三大个人常用数据分析工具,目前已完成了基本简介、数据读取、选取特定列、常用数据操作以及窗口函数等5篇文章。当然,这里的Spark是基于Scala语言版本,所以这3个工具实际分别代表了SQL、Python和Scala三种编程语言,而在不同语言中自然是不便于数据统一和交互的。
这个时代是大数据时代,也是大数据人才稀缺的时代。由于中国人才缺口比较大,大数据也迅速成为行业和市场的热点,更多的企业无论是对人才的招聘还是在培训都成了刚需,这也促使大数据人才的薪资在同岗位中是最高的,掌握大数据技术,工资提升40%左右是很常见的。”大数据的就业领域是很宽广的,不管是科技领域,还是食品产业,零售业等等,都是需要大数据人才进行大数据的处理,以提供更好的用户体验,以及优化库存,降低成本,预测需求。下面跟小编一起看看大数据培训后大家在各个领域可以从事的工作岗位及未来发展方向。 一、热门工作岗位 1、
领取专属 10元无门槛券
手把手带您无忧上云