首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

稳定的基线保存PPO模型并重新训练

基础概念

PPO(Proximal Policy Optimization)是一种用于强化学习的算法,它通过优化策略来最大化长期奖励。PPO的核心思想是在更新策略时限制策略的变化量,从而避免大的策略跳跃,使得训练过程更加稳定。

优势

  1. 稳定性:PPO通过限制策略更新的幅度,减少了训练过程中的不稳定性。
  2. 样本效率:PPO能够更有效地利用样本数据,减少了对大量数据的依赖。
  3. 易于实现:PPO的算法相对简单,易于实现和调试。

类型

PPO主要有两种变体:

  1. PPO-Penalty:通过在策略梯度中添加KL散度惩罚项来限制策略更新。
  2. PPO-Clip:通过裁剪策略更新的幅度来限制策略变化。

应用场景

PPO广泛应用于各种强化学习任务,包括但不限于:

  • 游戏AI(如Atari游戏、围棋)
  • 机器人控制
  • 自然语言处理中的对话系统
  • 推荐系统

保存和重新训练

保存基线模型

在训练过程中,定期保存模型的状态(权重和参数)是非常重要的,以便在需要时可以恢复训练或进行评估。以下是一个简单的示例代码,展示如何保存PPO模型:

代码语言:txt
复制
import torch

# 假设model是你的PPO模型
torch.save(model.state_dict(), 'ppo_model_baseline.pth')

重新训练

重新训练时,加载保存的模型并继续训练。以下是一个示例代码:

代码语言:txt
复制
import torch

# 假设model是你的PPO模型
model = PPOModel()  # 初始化模型
model.load_state_dict(torch.load('ppo_model_baseline.pth'))  # 加载保存的模型
model.train()  # 设置模型为训练模式

# 继续训练
for episode in range(num_episodes):
    # 训练代码...

遇到的问题及解决方法

问题:模型保存后重新加载时出现维度不匹配错误

原因:可能是由于模型结构在保存和加载之间发生了变化,例如增加了或减少了层的数量。

解决方法

  1. 确保保存和加载的模型结构一致。
  2. 检查模型的输入和输出维度是否匹配。
代码语言:txt
复制
# 确保模型结构一致
model = PPOModel()
model.load_state_dict(torch.load('ppo_model_baseline.pth'))

问题:重新训练时性能下降

原因:可能是由于模型在保存时处于不同的训练状态,或者数据分布发生了变化。

解决方法

  1. 确保在相同的训练环境下重新加载模型。
  2. 使用相同的数据预处理步骤。
  3. 调整学习率和其他超参数。
代码语言:txt
复制
# 调整学习率
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

参考链接

通过以上步骤和方法,你可以稳定地保存和重新训练PPO模型,确保训练过程的稳定性和性能。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • RLHF 和 DPO:简化和增强语言模型的微调

    人类反馈强化学习 (RLHF) 是人工智能领域的一种前沿方法,它利用人类偏好和指导来训练和改进机器学习模型。 RLHF的核心是一种机器学习范式,它结合了强化学习和监督学习的元素,使人工智能系统能够以更加人性化的方式学习和做出决策。 RLHF的重要性在于它有可能解决人工智能中的一些基本挑战,例如需要模型来理解和尊重人类的价值观和偏好。传统的强化学习模型通过与环境交互产生的奖励来学习,而 RLHF 则不同,它引入了人类反馈作为宝贵的指导来源。这种反馈可以帮助人工智能系统导航复杂的决策空间,与人类价值观保持一致,并做出更明智和道德的选择。RLHF 已经在从自然语言处理和推荐系统到机器人和自动驾驶汽车的广泛领域中找到了应用。通过将人类反馈纳入训练过程,RLHF有能力提高模型性能,增强用户体验,并为人工智能技术的负责任发展做出贡献。

    01

    每日论文速递 | 使用对比Reward改进RLHF

    摘要:来自人类反馈的强化学习(RLHF)是将大语言模型(LLM)与人类偏好相匹配的主流范式。然而,现有的 RLHF 在很大程度上依赖于准确、翔实的奖励模型,而奖励模型对各种来源的噪声(如人类标签错误)很脆弱、很敏感,从而使管道变得脆弱。在这项工作中,我们通过在奖励上引入惩罚项来提高奖励模型的有效性,该惩罚项被命名为contrastive rewards。我们的方法包括两个步骤:(1) 离线采样步骤,获取对提示的回应,作为计算基线;(2) 使用基线回应计算对比奖励,并将其用于近端策略优化 (PPO) 步骤。我们的研究表明,对比奖励使 LLM 能够惩罚奖励的不确定性、提高鲁棒性、鼓励改进基线、根据任务难度进行校准以及减少 PPO 中的差异。通过 GPT 和人类的评估,我们的实证结果表明,对比性奖励可以大幅提高 RLHF,而且我们的方法始终优于强基线。

    01

    从框架到经典方法,全面了解分布式深度强化学习DDRL

    AlphaGo 是一个在人机博弈中赢得众多职业围棋手的 agent 机器人。随着 AlphaGo 的突破,深度强化学习(Deep Reinforcement Learning,DRL)成为一种公认的解决连续决策问题的有效技术。人们开发了大量算法来解决介于 DRL 与现实世界应用之间的挑战性问题,如探索与开发困境、数据低效、多 agent 合作与竞争等。在所有这些挑战中,由于 DRL 的试错学习机制需要大量交互数据,数据低效(data inefficiency)是最受诟病的问题。为了应对这一问题,受到分布式机器学习技术的启发,分布式深度强化学习 (distributed deep reinforcement learning,DDRL) 已提出并成功应用于计算机视觉和自然语言处理领域。有观点认为,分布式强化学习是深度强化学习走向大规模应用、解决复杂决策空间和长期规划问题的必经之路。

    02

    每日论文速递 | [NeurIPS'23 Oral] DPO:Language Model 是一个 Reward Model

    摘要:虽然大规模无监督语言模型(LMs)可以学习广泛的世界知识和一些推理技能,但由于其训练完全不受监督,因此很难实现对其行为的精确控制。获得这种可控性的现有方法通常是通过人类反馈强化学习(RLHF),收集人类对各代模型相对质量的标签,并根据这些偏好对无监督语言模型进行微调。然而,RLHF 是一个复杂且经常不稳定的过程,首先要拟合一个反映人类偏好的奖励模型,然后利用强化学习对大型无监督 LM 进行微调,以最大限度地提高估计奖励,同时不会偏离原始模型太远。在本文中,我们介绍了 RLHF 中奖励模型的一种新参数化方法,它能以封闭形式提取相应的最优策略,使我们只需简单的分类损失就能解决标准的 RLHF 问题。由此产生的算法我们称之为直接偏好优化(DPO),它稳定、性能好、计算量小,在微调过程中无需从 LM 中采样,也无需进行大量的超参数调整。我们的实验表明,DPO 可以对 LM 进行微调,使其与人类偏好保持一致,甚至优于现有方法。值得注意的是,使用 DPO 进行的微调在控制代际情感的能力上超过了基于 PPO 的 RLHF,并且在总结和单轮对话中达到或提高了响应质量,同时在实现和训练方面也要简单得多。

    01

    星际争霸II协作对抗基准超越SOTA,新型Transformer架构解决多智能体强化学习问题

    机器之心报道 编辑:杜伟、陈萍 这项工作又让我们回到那个老生常谈的问题:Transformer 真的是万能的吗? 多智能体强化学习 (MARL) 是一个具有挑战性的问题,它不仅需要识别每个智能体的策略改进方向,而且还需要将单个智能体的策略更新联合起来,以提高整体性能。最近,这一问题得到初步解决,有研究人员引入了集中训练分散执行 (CTDE) 的方法,使智能体在训练阶段可以访问全局信息。然而,这些方法无法涵盖多智能体交互的全部复杂性。 事实上,其中一些方法还被证明是失败的。为了解决这个问题,有人提出多智能体优

    02

    用于深度强化学习的结构化控制网络(ICML 论文讲解)

    摘要:近年来,深度强化学习在解决序列决策的几个重要基准问题方面取得了令人瞩目的进展。许多控制应用程序使用通用多层感知器(MLP),用于策略网络的非视觉部分。在本工作中,我们为策略网络表示提出了一种新的神经网络架构,该架构简单而有效。所提出的结构化控制网(Structured Control Net ,SCN)将通用多层感知器MLP分成两个独立的子模块:非线性控制模块和线性控制模块。直观地,非线性控制用于前视角和全局控制,而线性控制围绕全局控制以外的局部动态变量的稳定。我们假设这这种方法具有线性和非线性策略的优点:可以提高训练效率、最终的奖励得分,以及保证学习策略的泛化性能,同时只需要较小的网络并可以使用不同的通用训练方法。我们通过OpenAI MuJoCo,Roboschool,Atari和定制的2维城市驾驶环境的模拟验证了我们的假设的正确性,其中包括多种泛化性测试,使用多种黑盒和策略梯度训练方法进行训练。通过将特定问题的先验结合到架构中,所提出的架构有可能改进更广泛的控制任务。我们采用生物中心模拟生成器(CPG)作为非线性控制模块部分的结构来研究运动任务这个案例,结果了表面的该运动任务的性能被极大提高。

    02

    干货 | 用于深度强化学习的结构化控制网络(ICML 论文讲解)

    摘要:近年来,深度强化学习在解决序列决策的几个重要基准问题方面取得了令人瞩目的进展。许多控制应用程序使用通用多层感知器(MLP),用于策略网络的非视觉部分。在本工作中,我们为策略网络表示提出了一种新的神经网络架构,该架构简单而有效。所提出的结构化控制网(Structured Control Net ,SCN)将通用多层感知器MLP分成两个独立的子模块:非线性控制模块和线性控制模块。直观地,非线性控制用于前视角和全局控制,而线性控制围绕全局控制以外的局部动态变量的稳定。我们假设这这种方法具有线性和非线性策略的优点:可以提高训练效率、最终的奖励得分,以及保证学习策略的泛化性能,同时只需要较小的网络并可以使用不同的通用训练方法。我们通过OpenAI MuJoCo,Roboschool,Atari和定制的2维城市驾驶环境的模拟验证了我们的假设的正确性,其中包括多种泛化性测试,使用多种黑盒和策略梯度训练方法进行训练。通过将特定问题的先验结合到架构中,所提出的架构有可能改进更广泛的控制任务。我们采用生物中心模拟生成器(CPG)作为非线性控制模块部分的结构来研究运动任务这个案例,结果了表面的该运动任务的性能被极大提高。

    03

    深度强化学习落地方法论训练篇:PPO、DQN、DDPG、学习率、折扣因子等

    为了保证 DRL 算法能够顺利收敛,policy 性能达标并具有实用价值,结果有说服力且能复现,需要算法工作者在训练前、训练中和训练后提供全方位一条龙服务。我记得 GANs 刚火起来的时候,因为训练难度高,有人在 GitHub 上专门开了 repository,总结来自学术界和工业界的最新训练经验,各种经过或未经验证的 tricks 被堆砌在一起,吸引了全世界 AI 爱好者的热烈讨论,可谓盛况空前。在玄学方面,DRL 算法训练有得一拼。但毕竟在科研领域没有人真的喜欢玄学,只有久经考验的一般化规律才能凝结成知识被更多的人接受和推广。本篇接下来的内容融合了许多个人经验和各种参考资料,算是在 DRL 训练 “去玄学” 化上做出的一点微不足道的努力。

    05

    IEEE|具有混合状态的强化分子生成

    今天给大家介绍的是悉尼大学的Fangzhou Shi等人在2019年IEEE上发表的会议论文“Reinforced Molecule Generation with Heterogeneous States”。近年来,基于强化学习的方法利用图来表示并生成分子。然而,分子图表示可能忽略了分子的内在上下文信息,并相应地限制了生成性能。在本文中,作者提出用SMILES上下文向量来增强原始图的状态。SMILES表示很容易被简单的语言模型处理,这样就可以提取分子的一般语义特征;图表示在处理每个原子的拓扑关系方面表现得更好。此外,作者还提出了一个结合监督学习和强化学习算法的框架,以更好地考虑分子的这两种状态表示,它可以融合来自两者的信息,并提取更全面的特征,从而使策略网络能够做出更复杂的决策。模型还引入了两种注意机制,即动作注意和图注意,以进一步提高性能。作者在数据集ZINC上进行了实验,实验结果表明,此框架在分子生成和化学性质优化的学习性能方面优于其他基线方法。

    01
    领券