首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用pandas筛选出指定列值所对应的行

在pandas中怎么样实现类似mysql查找语句的功能: select * from table where column_name = some_value; pandas中获取数据的有以下几种方法...: 布尔索引 位置索引 标签索引 使用API 假设数据如下: import pandas as pd import numpy as np df = pd.DataFrame({'A': 'foo bar...df.set_index('A', append=True, drop=False).xs('foo', level=1) # xs方法适用于多重索引DataFrame的数据筛选 # 更直观点的做法...数据提取不止前面提到的情况,第一个答案就给出了以下几种常见情况:1、筛选出列值等于标量的行,用== df.loc[df['column_name'] == some_value] 2、筛选出列值属于某个范围内的行...df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)] 4、筛选出列值不等于某个/些值的行 df.loc[df['column_name

19.2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas 筛选数据的 8 个骚操作

    日常用Python做数据分析最常用到的就是查询筛选了,按各种条件、各种维度以及组合挑出我们想要的数据,以方便我们分析挖掘。 东哥总结了日常查询和筛选常用的种骚操作,供各位学习参考。...loc按标签值(列名和行索引取值)访问,iloc按数字索引访问,均支持单值访问或切片查询。除了可以像[]按条件筛选数据以外,loc还可以指定返回的列变量,从行和列两个维度筛选。...pandas中where也是筛选,但用法稍有不同。 where接受的条件需要是布尔类型的,如果不满足匹配条件,就被赋值为默认的NaN或其他指定值。...举例如下,将Sex为male当作筛选条件,cond就是一列布尔型的Series,非male的值就都被赋值为默认的NaN空值了。...train.isnull().any(axis=0) 再比如查看含有空值的行数。

    35410

    Python数据科学(六)- 资料清理(Ⅰ)1.Pandas1.资料筛选2.侦测遗失值3.补齐遗失值

    ,Pandas等,不仅可以快速简单地清理数据,还可以让非编程的人员轻松地看见和使用你的数据。...1.Pandas 什么是Pandas 百度百科:Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。...Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。...1.资料筛选 #存储元素与切割 import pandas as pd df = pd.DataFrame(info) df.ix[1] # 查看特定的列 df[['name', 'age']] # 查看特定列的特定内容...df.isnull().sum() # 计算所有缺失值的数量 df.isnull().sum().sum() 分开计算每一栏缺失值的数量 3.补齐遗失值 处理缺失值常规的有以下几种方法 舍弃缺失值

    2.2K30

    pandas 缺失数据处理大全(附代码)

    利用闲暇之余将有关数据清洗、数据分析的一些技能再次进行分类,里面也包含了我平时用到的一些小技巧,此次就从数据清洗缺失值处理走起,链接:pandas数据清洗,关注这个话题可第一时间看到更新。...所有数据和代码可在我的GitHub获取: https://github.com/xiaoyusmd/PythonDataScience 一、缺失值类型 在pandas中,缺失数据显示为NaN。...np.nan == np.nan >> False 也正由于这个特点,在数据集读入以后,不论列是什么类型的数据,默认的缺失值全为np.nan。...## 缺失率 df.isnull().sum(axis=0)/df.shape[0] ## 缺失率(一步到位) isnull().mean() 四、缺失值筛选 筛选需要loc配合完成,对于行和列的缺失筛选如下...: # 筛选有缺失值的行 df.loc[df.isnull().any(1)] >> A B C D 1 a1 None 2 NaN ----------------- # 筛选有缺失值的列 df.loc

    2.4K20

    pandas 缺失数据处理大全

    本次来介绍关于缺失值数据处理的几个常用方法。 一、缺失值类型 在pandas中,缺失数据显示为NaN。缺失值有3种表示方法,np.nan,none,pd.NA。...np.nan == np.nan >> False 也正由于这个特点,在数据集读入以后,不论列是什么类型的数据,默认的缺失值全为np.nan。...除此之外,还要介绍一种针对时间序列的缺失值,它是单独存在的,用NaT表示,是pandas的内置类型,可以视为时间序列版的np.nan,也是与自己不相等。...## 缺失率 df.isnull().sum(axis=0)/df.shape[0] ## 缺失率(一步到位) isnull().mean() 四、缺失值筛选 筛选需要loc配合完成,对于行和列的缺失筛选如下...: # 筛选有缺失值的行 df.loc[df.isnull().any(1)] >> A B C D 1 a1 None 2 NaN ----------------- # 筛选有缺失值的列 df.loc

    47920

    手把手教你用pandas处理缺失值

    对于数值型数据,pandas使用浮点值NaN(Not a Number来表示缺失值)。...False 2 True 3 False dtype: bool pandas项目持续改善处理缺失值的内部细节,但是用户API函数,比如pandas. isnull,抽象掉了很多令人厌烦的细节...处理缺失值的相关函数列表如下: dropna:根据每个标签的值是否是缺失数据来筛选轴标签,并根据允许丢失的数据量来确定阈值 fillna:用某些值填充缺失的数据或使用插值方法(如“ffill”或“bfill...isnull:返回表明哪些值是缺失值的布尔值 notnull:isnull的反作用函数 01 过滤缺失值 有多种过滤缺失值的方法。...虽然你可以使用pandas.isnull和布尔值索引手动地过滤缺失值,但dropna在过滤缺失值时是非常有用的。

    2.8K10

    Pandas教程

    作为每个数据科学家都非常熟悉和使用的最受欢迎和使用的工具之一,Pandas库在数据操作、分析和可视化方面非常出色 为了帮助你完成这项任务并对Python编码更加自信,我用Pandas上一些最常用的函数和方法创建了本教程...基本统计 a) describe方法只给出数据的基本统计信息。默认情况下,它只计算数值数据的主统计信息。结果用pandas数据帧表示。 data.describe() ?...a) (删除nan值)。 data.isnull().values.any()是否有丢失的数据? True 如果没有将其分配到(新)变量中,则应该指定inplace=True,以便更改能生效。...data.dropna(axis=0, inplace=True) #从行中删除nan data.isnull().values.any() #是否有丢失的数据?...创建新的数据帧,复制数据,以保持原始数据的完整性。

    2.9K40

    数据清洗与准备(1)

    在进行数据分析和建模过程中,大量时间花费在数据准备上:加载、清洗、转换和重新排列,这样的工作占用了分析师80%以上的时间。本章将讨论用于缺失值、重复值、字符串操作和其他数据转换的工具。...1、处理缺失值 缺失数据在数据分析中很容易出现,在pandas中使用NaN表示缺失值,称NaN为容易检测到的缺失值;同时python内建的None值在对象数组中也会被当做NA处理: import numpy...dropna 根据每个标签的值是否为缺失数据来筛选轴标签,并允许根据丢失的数据量确定阈值 fillna 用某些值填充缺失的数据值或使用插值方法,如ffill或bfill isnull 返回表明哪些值是缺失值...notnull 作用域isnull相反 ---- (1)过滤缺失值 有多种过滤缺失值的方法,虽然可以用pandas.isnull手动过滤,但是dropna在过滤缺失值上更为有用,在series上使用...axis=1可以删除列 (4)传入thresh可以保留一定数量的观察值的行 处理缺失值是数据分析的第一步,下一篇文章将介绍补全缺失值和数据转换的相关内容。

    87810

    快速掌握Series~过滤Series的值和缺失值的处理

    这系列将介绍Pandas模块中的Series,本文主要介绍: 过滤Series的值 单条件筛选 多条件筛选 Series缺失值的处理 判断value值是否为缺失值 删除缺失值 使用fillna()填充缺失值...Series~Series的切片和增删改查 a 过滤Series的值 我们可以通过布尔选择器,也就是条件筛选来过滤一些特定的值,从而仅仅获取满足条件的值。...过滤Series的值的方式分为两种: 单条件筛选; 多条件筛选; import pandas as pd s = pd.Series([1,2,3,4],index = ["a","b","c","d...pandas as pd s = pd.Series([1,2,None,4]) print(s) result: 0 1.0 1 2.0 2 NaN 3 4.0 dtype...,返回新的Series对象; 使用series.isnull()以及series.notnull()方法,使用布尔筛选进行过滤出非缺失值; print("-"*5 + "使用dropna()删除所有的缺失值

    10.4K41

    五花八门的Pandas取数(上)

    公众号:尤而小屋 作者:Peter 编辑:Peter Pandas系列_DataFrame数据筛选(上) 本文介绍的是如何在pandas进行数据的筛选和查看。...因为pandas中有各种花样来进行数据筛选,本文先介绍比较基础的一部分。...] 指定数据值筛选 通过指定某个字段的具体某个值来筛选数据: [008i3skNgy1gqnrjo8yomj30xb0u0af3.jpg] 数值型和字符型联用 数值型的大小比较条件和字符相关条件的联合使用...] 查看字段缺失值 df25 = df.isnull().any() # 列中是否存在空值 df25 [008i3skNgy1gqnsuv4cimj30to09g3zt.jpg] 锁定缺失值存在的行...本文中介绍的多种算是比较基本,比如头尾部数据、基于条件判断的筛选、切片筛选等,后续将会介绍更多pandas中取数技巧,敬请期待!

    1.1K50

    pyspark之dataframe操作

    、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...类似 pandas 的 where 或者 combine_first 方法 # pandas #where即if-else函数 np.where(isnull(a),b,a) # combine_first...方法 #如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) #combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first...:'--', 'Dob':'unknown'}).show() 9、空值判断 有两种空值判断,一种是数值类型是nan,另一种是普通的None # 类似 pandas.isnull from pyspark.sql.functions...df.select(isnull("a").alias("r1"), isnull(df.a).alias("r2")).show() # 2.nan的空值判断 df = spark.createDataFrame

    10.5K10

    python学习之pandas

    #Pandas ''' 1,Pandas是Python的一个数据分析报包,该工具为解决数据分析任务而创建。...2,Pandas纳入大量库和标准数据模型,提供搞笑的操作数据集所需的工具 3.pandas提供大量能使我们快速便捷地处理数据的1函数方法 4,Pandas是字典形式,基于Numpy创建,让Numpy为中心的应用变得更加简单...])#索引在左边值在右边 print(s) #4.2 Date Frame #DateFrame是表格型数据结构,包含一组有序的列,每列可以使不同的值类型。...)#3,5行,0,3列 print(df.iloc[[1,2,4],[0,2]])#不连续筛选 print(df[df.A > 0])#筛选出df.A大于0的元素 #pandas设置数据 datas =...(df.fillna(value=0))#将NaN值替换为0 print(pd.isnull(df))#是nan为true不是nan为false print(np.any(df.isnull()))#判断数据中是否存在

    95010

    快速介绍Python数据分析库pandas的基础知识和代码示例

    本附注的结构: 导入数据 导出数据 创建测试对象 查看/检查数据 选择查询 数据清理 筛选、排序和分组 统计数据 首先,我们需要导入pandas开始: import pandas as pd 导入数据...NaN(非数字的首字母缩写)是一个特殊的浮点值,所有使用标准IEEE浮点表示的系统都可以识别它 pandas将NaN看作是可互换的,用于指示缺失值或空值。...要检查panda DataFrame中的空值,我们使用isnull()或notnull()方法。方法返回布尔值的数据名,对于NaN值为真。...在相反的位置,notnull()方法返回布尔值的数据,对于NaN值是假的。 value = df.notnull() # Opposite of df2.isnull() ?...注意:使用len的时候需要假设数据中没有NaN值。 description()用于查看一些基本的统计细节,如数据名称或一系列数值的百分比、平均值、标准值等。

    8.1K20

    Python开发之Pandas的使用

    一、简介 Pandas 是 Python 中的数据操纵和分析软件包,它是基于Numpy去开发的,所以Pandas的数据处理速度也很快,而且Numpy中的有些函数在Pandas中也能使用,方法也类似。...Pandas 为 Python 带来了两个新的数据结构,即 Pandas Series(可类比于表格中的某一列)和 Pandas DataFrame(可类比于表格)。...6、缺失值(NaN)处理 查找NaN 可以使用isnull()和notnull()函数来查看数据集中是否存在缺失数据,在该函数后面添加sum()函数来对缺失数量进行统计。...inplace:是否替换原数据,默认为False limit:接受int类型的输入,可以限定替换前多少个NaN 五、数据分析流程及Pandas应用 1、打开文件 python...[row_index,col_index] df.loc['row_name','col_name'] #筛选某列中满足某条件的数据 df[df['col_name'] == value]#等于某值的数据

    2.9K10

    Pandas数据应用:库存管理

    price'] = pd.to_numeric(df['price'], errors='coerce') # 将无法转换的值设为NaN(二)数据清洗缺失值处理库存数据中可能会存在缺失值,如商品名称为空...如果不处理缺失值,可能会导致错误的分析结果。可以使用df.isnull()来检测缺失值,使用df.dropna()删除含有缺失值的行或者df.fillna()填充缺失值。...例如:# 检测缺失值missing_values = df.isnull().sum()print(missing_values)# 删除含有缺失值的行df_cleaned = df.dropna()#...例如,将包含字母的字符串列强制转换为整数。解决方案在转换之前先对数据进行预处理,如去除特殊字符、空格等,或者使用errors='coerce'参数将无法转换的值设为NaN,然后再进行处理。...在库存管理中的应用非常广泛,从数据读取到数据清洗,再到数据查询与筛选等各个环节都发挥着重要作用。

    12310
    领券