首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Cell Reports : 人脑中的湍流状动力学

湍流促进了物理系统中跨尺度的能量/信息快速传输。这些特性对大脑功能很重要,但目前尚不清楚大脑内部的动态主干是否也表现出动荡。利用来自1003名健康参与者的大规模神经成像经验数据,我们展示了类似湍流的人类大脑动力学。此外,我们还建立了一个耦合振荡器的全脑模型,以证明与数据最匹配的区域对应着最大发达的湍流样动力学,这也对应着对外部刺激处理的最大敏感性(信息能力)。该模型通过遵循作为布线成本原则的解剖连接的指数距离规则来显示解剖学的经济性。这在类似湍流的大脑活动和最佳的大脑功能之间建立了牢固的联系。总的来说,我们的研究结果揭示了一种分析和建模全脑动态的方法,表明一种湍流样的动态内在主干有助于大规模网络通信。 2.简介

00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Science:人类睡眠中的神经电生理,血液动力学和脑脊液振荡的耦合

    睡眠对于认知和维持健康的大脑功能至关重要。神经活动中的慢波有助于记忆巩固,而脑脊液(CSF)有助于清除大脑中的代谢废物。这两个过程是否相关尚不清楚。波士顿大学生物医学工程系的Fultz等人对此进行了研究,结果发表在Science杂志。我们使用累加的神经影像技术来测量人脑的生理和神经动力学。发现非快速眼动睡眠期间出现的振荡电生理,血液动力学和 CSF 动态的连贯模式。神经慢波之后是血液动力学振荡,而血液动力学振荡又与 CSF 流量相关。这些结果表明,沉睡的大脑在宏观范围内表现出 CSF 流动波,并且这些 CSF 动态与神经和血液动力学节律相互关联。

    02

    机器人动力学建模:机械臂动力学

    多体系统动力学形成了多种建模和分析的方法, 早期的动力学研究主要包括 Newton-Euler 矢量力学方法和基于 Lagrange 方程的分析力学方法。 这种方法对于解决自由度较少的简单刚体系统, 其方程数目比较少, 计算量也比较小, 比较容易, 但是, 对于复杂的刚体系统, 随着自由度的增加, 方程数目 会急剧增加, 计算量增大。 随着时代的发展, 计算机技术得到了突飞猛进的进步, 虽然可以利用计算机编程求解出动力学方程组, 但是, 对于求解下一时刻的关节角速度需要合适的数值积分方法, 而且需要编写程序, 虽然这种方法可以求解出方程的解, 但是, 由于这种编程方法不具有通用性, 针对每个具体问题, 都需要编程求解, 效率比较低, 因此, 如果能在动力学建模的同时就考虑其计算问题, 并且在建模过程中考虑其建模和求解的通用性, 就能较好的解决此问题。

    065

    Cell | 映射单细胞的转录组向量场

    本文介绍由美国马萨诸塞州怀特黑德生物医学研究所的Xiaojie Xu和Jonathan S. Weissman以及匹兹堡大学计算与系统生物学系的Jianhua Xing共同发表在Cell的研究成果:基于单细胞测序(scRNA-seq)RNA速度和代谢标记预测细胞状态。作者提出了一个分析框架dynamo (https://github.com/aristoteleo/dynamo-release),推断绝对RNA速度,重建预测细胞命运的连续向量场,利用微分几何提取潜在的规则,最终预测出最佳的重编程路径和扰动结果。进一步分析了dynamo在克服传统基于剪接的RNA速度分析的基本限制方面的能力,表明其能在代谢标记的人类造血scRNA-seq数据集上精确估计速度。此外,微分几何分析揭示了驱动早期巨核细胞出现的机制,并阐明了PU.1-GATA1电路中的不对称调节。利用最小作用路径方法,dynamo可以准确预测驱动无数造血系统的转变,并最终由计算机干扰预测基因微扰引起细胞命运的转变。综上,Dynamo有助于开展细胞状态转变的定量分析和预测。

    02

    Nat. Rev. Drug. Discov. | 氘在药物发现中的应用:进展、机遇与挑战

    今天为大家介绍的是来自Tracey Pirali的一篇综述论文。氘代替氢原子的替代反应将在分子中增加一个中子。尽管这是一个微小的变化,但这种结构修饰被称为氘化,可能会改善药物的药代动力学和/或毒性特性,从而与非氘化的对应物相比,在疗效和安全性方面可能带来改进。最初主要通过“氘开关”方法开发已上市药物的氘代物,如氘替贝嗪,该药物于2017年成为首个获得FDA批准的氘代药物。在过去几年中,研究重点已转向将氘化应用于新型药物发现,2022年FDA批准了创新的全新氘化药物德克拉伐替尼。在综述中,作者突出了药物发现和开发中氘化领域的关键里程碑,强调了最近和具有指导意义的药物化学计划,并讨论了药物开发者面临的机遇和障碍,以及尚待解决的问题。

    02

    eLife:脑卒中大鼠的功能超声成像

    麻醉是临床前脑卒中研究的一个主要混杂因素,因为镇静患者很少发生脑卒中。此外,麻醉作为神经毒性或保护剂影响脑功能和脑卒中结局。到目前为止,还没有一种方法适合在对清醒动物进行血流动力学成像同时大规模记录脑功能的同时诱导中风。由于这个原因,人们对中风后的头几个小时以及相关的功能改变仍然知之甚少。在这里,我们提出了一种策略来研究卒中血流动力学和卒中诱导的功能改变,而不需要麻醉的混淆效应,即在清醒状态下。功能超声(fUS)成像用于连续监测脑卒中发作后3小时内65个脑区/半球的脑血容量(CBV)变化。在清醒的大鼠中,使用一种适合永久性大脑中动脉闭塞的化学血栓形成剂诱导局灶性皮质缺血。早期(0-3小时)和延迟(第5天)的fUS记录能够表征缺血的特征,扩张性去极化和体感觉丘脑皮质回路的功能改变。脑卒中后丘脑皮质功能在脑卒中后早期和后期时间点(0-3小时和5天)均受到影响。总的来说,我们的方法有助于对血流动力学和脑功能进行早期、持续和慢性评估。当与中风研究或其他病理分析相结合时,这种方法旨在增强我们对生理病理学的理解,从而开发相关的治疗干预措施。

    01

    单细胞测序揭示PD-L1免疫治疗联合紫杉醇化疗在三阴性乳腺癌中的作用机制

    在三阴性乳腺癌(TNBC)中,将化疗与检查点抑制剂相结合的好处仍然不是很清楚。作者利用单细胞RNA和ATAC测序来检查22名患有晚期TNBC的患者的免疫细胞动力学,这些患者的治疗方法是紫杉醇或与阿特珠单抗 (Atezolizumab)的结合。我们证明,高水平的基底CXCL13+ T细胞与巨噬细胞的炎性特征有关,可以预测对组合疗法的有效反应。在反应灵敏的患者中,淋巴组织诱导(LTi)细胞、滤泡B(Bfoc)细胞、CXCL13 +T细胞和常规1型树突状细胞(cDC1)在联合治疗后协同增加,但在紫杉醇单一疗法后则减少。我们的数据突出了CXCL13 +T细胞在有效应对抗PD-L1疗法方面的重要性,并表明通过紫杉醇疗法减少这些细胞可能会损害伴随阿特珠单抗 (Atezolizumab)进行TNBC治疗的临床结果。

    04

    “北大-鹏城-腾讯”新视角:从势能的角度探讨模型的可迁移性-ICCV2023开源

    随着大规模数据集预训练模型的广泛应用,迁移学习已成为计算机视觉任务中的关键技术。但是,从大量的预训练模型库中为特定下游任务选择最优的预训练模型仍然是一个挑战。现有的方法主要依赖于编码的静态特征与任务标签之间的统计相关性来测量预训练模型的可迁移性,但它们忽略了微调过程中潜在的表示动力学的影响,导致结果不可靠,尤其是对于自监督模型。在本文中,我们从潜在能量的角度提出了一种新颖的方法——PED,来解决这些挑战。我们将迁移学习动力视为降低系统潜在能量的过程,并直接对影响微调动力学的相互作用力进行物理学建模。通过在物理驱动模型中捕获动态表示的运动来降低潜在能量,我们可以获得增强和更稳定的观测结果来估计可迁移性。在10个下游任务和12个自监督模型上的实验结果表明,我们的方法可以顺利集成到现有的优秀技术中,增强它们的性能,这揭示了它在模型选择任务中的有效性和发掘迁移学习机制的潜力。我们的代码将在https://github.com/lixiaotong97/PED上开源。

    04

    柔性机械臂:动力学建模具体方法

    建立柔性机械臂动力学方程主要利用Newton-Euler和Lagrange方程这两个最具代表性的方程,另外比较常用的还有Kane方法等。为了建立动力学模型和控制的方便,柔性关节一般简化为弹簧。当连杆存在柔性时,常采用假设模态法、有限元法、有限段法等方法描述相应臂杆的柔性变形,然后再根据需要进行截断。柔性臂杆的变形常常简化为Euler-Bernulli梁来处理,即考虑到机械臂连杆的长度总比其截面尺寸大得多,运行过程中所产生的轴向变形和剪切变形相对于挠曲变形而言非常小,柔性臂杆只考虑挠曲变形,忽略轴向变形和剪切变形。因而从动力学角度看,每根柔性连杆都可视为一段梁。

    055

    Chemical Science | SDEGen:基于随机微分方程的构象生成模型

    本文介绍一篇来自浙江大学侯廷军教授、康玉副教授和碳硅智慧联合发表在Chemical Science的论文《SDEGen: Learning to Evolve Molecular Conformations from Thermodynamic Noise for Conformation Generation》。该论文提出了一种将分子力学当中的随机动力学系统和深度学习当中的概率模型相结合的小分子三维构象生成模型:SDEGen。作者采用随机微分方程(Stochastic Differential Equation, SDE)模拟分子构象从热噪声分布到热平衡分布的过程,联合概率深度学习的最新DDIM(Denoising Diffusion Implicit Models)模型,不仅提高了模型生成构象的效率,并且在多项评测任务(包括构象生成质量、原子间距离分布和构象簇的热力学性质)上实现了精度的提升。如在构象生成质量上,其多样性指标优于传统方法22%,准确性指标优于传统方法40%;在热力学性质预测方面,将传统方法的精度提升了一个数量级,与量化计算的结果误差缩小至~2kJ/mol。除此之外,这篇文章还引入了晶体构象的比对实验和势能面分布实验,为构象生成任务的评测提供了更多维及更物理的视角。大量的实验表明,SDEGen不仅可以搜索到小分子晶体构象所在的势能面的势阱当中,还可以搜索到完整势能面上多个局域优势构象。同时,SDEGen模型计算效率极高,在分子对接、药效团识别、定量构效关系等药物设计任务中具有广泛的应用前景。

    03

    甘利俊一 | 信息几何法:理解深度神经网络学习机制的重要工具

    智源导读:深度学习的统计神经动力学主要涉及用信息几何的方法对深度随机权值网络进行研究。深度学习技术近年来在计算机视觉、语音识别等任务取得了巨大成功,但是其背后的数学理论发展却很滞后。日本理化所的Shun-ichi Amari先生(中文:甘利俊一)近期在北京智源大会上发表了题为《信息几何法:理解深度神经网络学习机制的重要工具》的演讲。在演讲中,甘利先生梳理了人工神经网络研究的部分重要历史事件,分享了近两年在深度学习理论的一些最新研究成果,指出统计神经动力学方法可以为理解深度学习提供重要的理论工具。

    03

    动脉自旋标记(ASL)磁共振成像:基础物理、脉冲序列和建模

    动脉自旋标记(ASL)是一种非侵入性磁共振成像(MRI)技术,它使用内源性动脉血作为动态示踪剂来量化器官的组织灌注。血流灌注描述了一个器官中给定体积的组织向毛细血管床输送和交换的动脉血水量,单位是 mL/100g/min。ASL常用于人脑,灰质脑灌注为70mL/100g/min,白质为20mL/100g/min。由于其非侵入性,ASL现在被更广泛地应用于其他器官,包括肾脏、肝脏、外周肌肉、胰腺和心脏。由于ASL不需要外源性造影剂,随着时间的推移重复使用是安全的,因此可以用来追踪疾病进展或药物治疗引起的灌注变化。本文发表在Advances in Magnetic Resonance Technology and Applications中。

    05
    领券