首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PointTrackNet:一种用于点云三维目标检测和跟踪的端到端网络

    当前基于机器学习的多目标跟踪(MOT)框架在3-D点云跟踪场景中变得越来越流行。大多数传统的跟踪方法都使用滤波器(例如,卡尔曼滤波器或粒子滤波器)来按时间顺序预测对象位置,但是它们容易受到极端运动条件的影响,例如突然制动和转弯。在本文中提出了PointTrackNet目标跟踪方法,这是一个端到端的3-D对象检测和跟踪网络,可以为每个检测到的对象生成前景掩膜,3-D边界框和点跟踪关联位移。网络仅将两个相邻的点云帧作为输入。在KITTI跟踪数据集上的实验结果显示,与最新的跟踪网络相比本文的方法具有比较好的结果,尤其是在不规则和快速变化的情况下。

    01

    学习用于视觉跟踪的深度紧凑图像表示

    在本文中,我们研究了跟踪可能非常复杂背景的视频中运动物体轨迹的挑战性问题。与大多数仅在线学习跟踪对象外观的现有跟踪器相比,我们采用不同的方法,受深度学习架构的最新进展的启发,更加强调(无监督)特征学习问题。具体来说,通过使用辅助自然图像,我们离线训练堆叠去噪自动编码器,以学习对变化更加鲁棒的通用图像特征。然后是从离线培训到在线跟踪过程的知识转移。在线跟踪涉及分类神经网络,该分类神经网络由训练的自动编码器的编码器部分构成,作为特征提取器和附加分类层。可以进一步调整特征提取器和分类器以适应移动物体的外观变化。与一些具有挑战性的基准视频序列的最先进的跟踪器进行比较表明,当我们的跟踪器的MATLAB实现与适度的图形处理一起使用时,我们的深度学习跟踪器更准确,同时保持低计算成本和实时性能单位(GPU)。

    05

    CVPR 2021 | Differentiable SLAM-net

    同时定位与建图(SLAM)在视觉机器人导航等下游应用中仍然具有挑战性,原因包括但不限于快速转弯、无特征墙壁、图像质量差等。本文作者提出了一种粒子滤波的SLAM网络(Particle SLAM-net)和一种导航框架,可以使平面机器人能够在以前没见过的室内环境中进行导航。SLAM网络将基于粒子滤波的SLAM算法编码到可微计算图中,通过粒子滤波算法进行反向传播学习面向任务的神经网络组件。由于它能够为最终目标联合优化所有模型组件,SLAM-net能够在具有挑战性的条件下保持鲁棒性。作者在Habitat平台上用不同的真实RGB和RGB-D数据集进行了实验。SLAM-net在噪声环境下的性能明显优于广泛采用的ORB-SLAM。本文采用SLAM网络的导航架构大大提高了Habitat Challenge 2020 PointNav任务的最新水平(成功率从37%到64%)。

    03

    用于机器人定位和建图的增强型 LiDAR-惯性 SLAM 系统

    粒子滤波也是一个十分经典的算法,它与卡尔曼滤波的不同之处在于卡尔曼滤波假设概率分布是高斯分布,然后在计算后验概率(pdf)时,利用正态分布的性质,可以计算出来;而粒子滤波的后验概率分布是通过蒙特卡洛方法采样得到的。蒙特卡洛方法很清楚的一点是采样的粒子越多,概率分布越准确,但是计算速度会下降。也就是说如何分布你的有限个数的采样粒子来得到更为准确的后验概率分布是粒子滤波一直在做的事情。在本文中粒子滤波的改善一个是局部采样,另一个是采样时更好的概率分布来得到更精确的后验概率。在闭环检测这里则是应用了深度学习的方法。具体实现可以随笔者一起看下面的文章。

    03

    SORT新方法AM-SORT | 超越DeepSORT/CO-SORT/CenterTrack等方法,成为跟踪榜首

    基于运动的多目标跟踪(MOT)方法利用运动预测器提取时空模式,并估计未来帧中的物体运动,以便后续的物体关联。原始的卡尔曼滤波器广泛用作运动预测器,它假设预测和滤波阶段分别具有常速和高斯分布的噪声,分别对应于。常速假设物体速度和方向在短期内保持一致,高斯分布假设估计和检测中的误差方差保持恒定。虽然这些假设通过简化数学建模使卡尔曼滤波器具有高效性,但它们仅适用于特定场景,即物体位移保持线性或始终较小。由于忽略了具有非线性运动和遮挡的场景,卡尔曼滤波器在复杂情况下错误地估算物体位置。

    01

    自动驾驶定位算法(十三)-粒子滤波(Particle Filter)

    自动驾驶对定位的精度的要求在厘米级的,如何实现厘米级的高精度定位呢?一种众所周知的定位方法是利用全球定位系统(GPS),利用多颗卫星的测量结果,通过三角测量(Triangulation)机制确定目标的位置,GPS定位的原理见自动驾驶硬件系统(十一)-Global Navigation Satellite Systems (GNSS),但是GPS并不总是提供高精度定位数据,在GPS信号强的情况下,定位精度在1~3m范围内,在GPS信号弱的情况下,定位精度下降到10~50m范围内。虽然依赖于RTK,可以将卫星定位的精度提高到厘米级,但是在GPS信号弱的场景下,定位精度仍然不能满足应用需求。所以仅仅使用GPS不能实现高可靠的高精度定位的。

    01

    计算机视觉中,目前有哪些经典的目标跟踪算法?

    【新智元导读】这篇文章将非常详细地介绍计算机视觉领域中的目标跟踪,尤其是相关滤波类方法,分享一些作者认为比较好的算法。 相信很多来这里的人和我第一次到这里一样,都是想找一种比较好的目标跟踪算法,或者想对目标跟踪这个领域有比较深入的了解,虽然这个问题是经典目标跟踪算法,但事实上,可能我们并不需要那些曾经辉煌但已被拍在沙滩上的tracker(目标跟踪算法),而是那些即将成为经典的,或者就目前来说最好用、速度和性能都看的过去tracker。我比较关注目标跟踪中的相关滤波方向,接下来我帮您介绍下我所认识的目标跟踪,

    010
    领券