要注意到,OpenGL 绘制的物体是 3D 的,而纹理是 2D 的,那么纹理映射就是将 2D 的纹理映射到 3D 的物体上,可以想象成用一张纸裹着一个物体一样,不过要按照一定规律来。
使用纹理坐标(x,y,z)从绑定到二维纹理参考texRef的CUDA数组中提取数据。 详细程度由级别给出。 Type与DataType相同,除非readMode是cudaReadModeNormalizedFloat(请参阅Texture Reference API),在这种情况下,Type是相应的浮点类型 tex3DGrad():
帧缓冲(Framebuffer Object),简称 FBO,在渲染绘制中, 图像最终都是绘制到 FBO 上的,一般都是默认的 FBO 上,也就是我们的屏幕。
注:参考自bilibili系列视频,OpenGL 从入门到成魔-第7章-纹理和纹理坐标,更详细的内容可以从视频获取https://www.bilibili.com/video/BV1bZ4y1W7tX
上一篇文章,讲解了如何使用EGL,并且提到EGL可以建立一个离屏渲染的缓冲区,这种离屏渲染的方式通常用于模拟整个渲染窗口,比如可以用于FFmpeg软编码,将显示在虚拟窗口中的画面编码成H264。
这里先介绍一下这个问题的背景:在我们提供的 Android 视频封装的 Demo 中,使用 KFSurfaceTexture 录制 MP4 文件并使用 Surface 编码时大致过程如下:
纹理对象,是将像素(texels)以数组方式传给 GPU 的对象,常见场景是贴图,就是将图片的数据应用到 3D 物体上。
FBO Frame Buffer object 为什么要用FBO 我们需要对纹理进行多次渲染采样时,而这些渲染采样是不需要展示给用户看的,所以我们就可以用一个单独的缓冲对象(离屏渲染)来存储我们的这
上一篇文章介绍了如何使用GL10描绘三维物体的线段框架,后面给出的立方体和球体效果图,虽然看起来具备立体的轮廓,可离真实的物体还差得远。因为现实生活中的物体不仅仅有个骨架,还有花纹有光泽(比如衣服),所以若想让三维物体更加符合实际,就得给它加一层皮,也可以说是加一件衣服,这个皮毛大衣用OpenGL的术语称呼则为“纹理”。 三维物体的骨架是通过三维坐标系表示的,每个点都有x、y、z三个方向上的数值大小。那么三维物体的纹理也需要通过纹理坐标系来表达,但纹理坐标并非三维形式而是二维形式,这是怎么回事呢?打个比方,裁缝店给顾客制作一件衣服,首先要丈量顾客的身高、肩宽,以及胸围、腰围、臀围等三围,然后才能根据这些身体数据剪裁布料,这便是所谓的量体裁衣。那做衣服的一匹一匹布料又是什么样子的?当然是摊开来一大片一大片整齐的布匹了,明显这些布匹近似于二维的平面。但是最终的成品衣服穿在顾客身上却是三维的模样,显然中间必定有个从二维布匹到三维衣服的转换过程。转换工作的一系列计算,离不开前面测量得到的身高、肩宽、三围等等,其中身高和肩宽是直线的长度,而三围是曲线的长度。如果把三围的曲线剪断并拉直,就能得到直线形式的三围;同理,把衣服这个三维的曲面剪开,然后把它摊平,得到平面形式的衣服。于是,剪开并摊平后的平面衣服,即可与原始的平面布匹对应起来了。因此,纹理坐标的目的就是标记被摊平衣服的二维坐标,从而将同属二维坐标系的布匹一块一块贴上去。 在OpenGL体系之中,纹理坐标又称UV坐标,通过两个浮点数组合来设置一个点的纹理坐标(U,V),其中U表示横轴,V表示纵轴。纹理坐标不关心物体的三维位置,好比一个人不管走到哪里,不管做什么动作,身上穿的还是那件衣服。纹理坐标所要表述的,是衣服的一小片一小片分别来自于哪块布料,也就是说,每一小片衣服各是由什么材质构成。既可以是棉布材质,也可以是丝绸材质,还可以是尼龙材质,纹理只是衣服的脉络,材质才是最终贴上去的花色。 给三维物体穿衣服的动作,通常叫做给三维图形贴图,更专业地说叫纹理渲染。渲染纹理的过程主要由三大项操作组成,分别说明如下: 一、启用纹理的一系列开关设置,该系列又包括下述步骤: 1、渲染纹理肯定要启用纹理功能了,并且为了能够正确渲染,还需同时启用深度测试。启用深度测试的目的,是只绘制物体朝向观测者的正面,而不绘制物体的背面。上一篇文章的立方体和球体因为没有开启深度测试,所以背面的线段也都画了出来。启用纹理与深度测试的代码示例如下:
上文中我们已经实现了将OpenGL和相机结合到一起,本文就在上文的基础上,添加滤镜。
这个公众号会路线图式的遍历分享音视频技术:音视频基础 → 音视频工具 → 音视频工程示例 → 音视频工业实战。关注一下成本不高,错过干货损失不小 ↓↓↓
这篇文章中会省略一部分基本的初始化代码,而且代码都是按模块进行了分割,如果想要了解可以去另一篇文章中了解一下OpenGL (三)--一个"HelloWorld"的执行全过程,也可以直接下载源码来看github
使用前面学过的技术已经可以利用OpenGL ES构建立体图形,并通过顶点着色器和片元着色器对其进行各种变化呢和光照等效果使得三维效果更加真实,实际上我看看到很多的3D游戏漂亮多了,那是因为有各种各样的漂亮的图像带给人很多视觉盛宴,这篇文章在前面的基础上,增加物体的表面贴图,使得物体更加好看。
如果我们希望从同一个图片多次读取像素信息,但是每次读取的时候使用的过滤方式不一样, 此时我们需要创建两个不同的纹理对象。
之前介绍 OpenGL PBO 使用方法的文章发出去之后,陆陆续续有一些同学看过代码之后提出疑问:使用 PBO 读取渲染结果还是很慢啊?
一般来说,我们在使用 OpenGL 的时候,指令不是立即执行的。它们首先被送到指令缓冲区,然后才被送到硬件执行。glFinish 和 glFlush 都是强制将命令缓冲区的内容提交给硬件执行。
博主作为OpenGL新手,最近要用OpenGL进行并行的数据计算,突然发现这样的资料还是很少的,大部分资料和参考书都是讲用OpenGL进行渲染的。好不容易找到一本书《GPGPU编程技术,从OpenGL、CUDA到OpenCL》,里面对并行处理的发展进行了系统性的介绍,还是很不错的。小白博主很兴奋,看完书中第三章后恍然大悟了很多,就贴出书中代码3-3的例子,实现一番,并用一副图片数据做了实现。 实现环境:Window7 32bit, VS2013+OpenGL3.3+GLEW+GLFW。 OpenGL用来进行
回顾 解析(一) 解析(二) GPUImageFilter就是用来接收源图像,通过自定义的顶点、片元着色器来渲染新的图像,并在绘制完成后通知响应链的下一个对象。 GPUImageFramebuffer就是用来管理纹理缓存的格式与读写帧缓存的buffer。 GPUImageVideoCamera是GPUImageOutput的子类,提供来自摄像头的图像数据作为源数据,一般是响应链的源头。 GPUImageView是响应链的终点,一般用于显示GPUImage的图像。 琨君的基于GPUImage的实时美
OpenGL PBO(Pixel Buffer Object),被称为像素缓冲区对象,主要被用于异步像素传输操作。PBO 仅用于执行像素传输,不连接到纹理,且与 FBO (帧缓冲区对象)无关。
OpenGL ES 多目标渲染(MRT),即多重渲染目标,是 OpenGL ES 3.0 新特性,它允许应用程序一次渲染到多个缓冲区。
提到OpenGL,想必很多人都会说,我知道这个东西,可以用来渲染2D画面和3D模型,同时又会说,OpenGL很难、很高级,不知道怎么用。
本文介绍了如何使用 OpenGL ES 来实现长腿功能。学习这个例子可以加深我们对纹理渲染流程的理解。另外,还会着重介绍一下「渲染到纹理」这个新知识点。
前言 最近观看下面这本书有感,结合之前的学习,对OpenGL的知识进行回顾。 概念 帧缓存:接收渲染结果的缓冲区,为GPU指定存储渲染结果的区域。 帧缓存可以同时存在多个,但是屏幕显示像素受到
GPUImage 是 iOS 上一个基于 OpenGL 进行图像处理的开源框架,后来有人借鉴它的想法实现了一个 Android 版本的 GPUImage ,本文也主要对 Android 版本的 GPUImage 进行分析。
我屮艸芔茻,转眼就7月份了。 今天试了一下立方体贴图,比较简单,大概说下和平面贴图的区别。 1. 平面贴图需要的是纹理坐标vec2;立方体贴图需要的是一个方向向量vec3,长度没有关系,重要的是方向,OpenGL会根据方向向量与立方体的各个面的交点来采样纹理。 2.在立方体的六个面贴六张不同的图片,我用的方法是将六张图片读入到OpenCV的Mat数组中,需要从BGR转到RGB,然后一个一个去绑定纹理。此时区别2D纹理的地方在于要是用GL_TEXTURE_CUBE_MAP,而不再是GL_TEXTURE_2D了
在上章3.QOpenGLWidget-通过着色器来渲染渐变三角形,我们为每个顶点添加颜色来增加图形的细节,从而创建出有趣的图像。但是,如果想让图形看起来更真实,我们就必须有足够多的顶点,从而指定足够多的颜色。这将会产生很多额外开销。
从源码的角度分析、学习GPUImage和OpenGL ES,这是第一篇,介绍GPUImageFilter 和 GPUImageFramebuffer。 OpenGL ES准备 回顾下我们之前的OpenGL ES教程,图像在OpenGL ES中的表示是纹理,会在片元着色器里面进行像素级别的处理。 假设我们自定义一个OpenGL ES程序来处理图片,那么会有以下几个步骤: 1、初始化OpenGL ES环境,编译、链接顶点着色器和片元着色器; 2、缓存顶点、纹理坐标数据,传送图像数据到GPU; 3、绘制图
之前我们一直都是在绘制简单的图形与颜色,如果是一张图片该如何通过OpenGL ES进行渲染出来呢?
在Deno项目的源代码中,time.rs文件位于deno/ext/kv/路径下,它的作用是实现了与时间相关的功能,为Deno的KV存储模块提供了时间戳的生成和处理方法。
在 OpenGL ES 图形图像处理中,会经常遇到一种情况:如何将一个超大的数组传给着色器程序?
3.2.11.1.2. Texture Reference API Some of the attributes of a texture reference are immutable and must be known at compile time; they are specified when declaring the texture reference. A texture reference is declared at file scope as a variable of type
比如美颜相机那些,处理摄像头数据展示出来,为了提高预览的效率,所以这里使用了VBO和FBO,如果不知道这个,请看上面的文章。
这个特效虽然看着很普通,但结合使用者的创意,可以玩出各种各样的花样,下面就来看看如何实现
VBO Vertex Buffer object 为什么要用VBO 不使用VBO时,我们每次绘制( glDrawArrays )图形时都是从本地内存处获取顶点数据然后传输给OpenGL来绘制,这样就会频繁的操作CPU->GPU增大开销,从而降低效率。 使用VBO,我们就能把顶点数据缓存到GPU开辟的一段内存中,然后使用时不必再从本地获取,而是直接从显存中获取,这样就能提升绘制的效率。 创建VBO的主要步骤: //1. 创建VBO得到vboId int[] vbos = new int[1]; GLE
文首先对GLSurfaceView相关知识进行讲解,然后介绍Android系统如何获取摄像头数据并利用GLSurfaceView渲染到屏幕上。
GLkit是苹果对OpenGL/openGl ES的一次封装,目的是为了简化苹果开发者使用成本,它的出现加快了开发者的开发速度。类似在OPenGL中出现的固定着色器的概念。但是只要是固定的就会有限制,无法进行自定义编程(顶点着色器,片元着色器)
前面的文章都是绘制实实在在的图形的,在OpenGL中,我们还可以使用纹理图片来渲染图形,使用图片可以让描绘出来的物体更加真实也可以让我们的开发更加简单。 资料:http://learnopengl-cn.readthedocs.io/zh/latest/01%20Getting%20started/06%20Textures/ 。 接下来我们直接开始代码书写: 1.开始之前,我们把工具类GLESUtils优化一下,使之能直接返回我们需要的program。用了这么久,希望你自己也能封装。 修改.h #impo
OpenGL(八)--纹理相关API 1. 原始图像数据 //存储图像数据所占内存大小 size = 图像的高度 * 图像的宽度 * 每个像素所占字节数 像素所占字节数:一般为4Byte,包含RGBA四个通道,每个通道为1Byte(8Bit) 2. 认识函数 像素存储方式 //改变像素存储方式 void glPixelStorei(GLenum pname,GLint param); //恢复像素存储方式 void glPixelStoref(GLenum pname,GLint param); /
VBO(Vertex Buffer Object)是指顶点缓冲区对象,而 EBO(Element Buffer Object)是指图元索引缓冲区对象,VAO 和 EBO 实际上是对同一类 Buffer 按照用途的不同称呼。
上面我们得到的( ?)是不在归一化坐标范围内的,为了能使OpenGL正确的渲染,我们就需要把(?)以及其他边统一转换到归一化坐标内,这个操作就是正交投影
Bump mapping: 凹凸贴图;模拟粗糙外表面的技术。 FX-Water simple.shader中即用到了。模拟波浪效果。
这个问题经常出现, 所以我试着来总结一下ATi和nVidia芯片对于深度纹理的支持情况. 如果发现我说错了nVidia的深度实现, 请告知我 :)
VBO(Vertex Buffer Object)是指顶点缓冲区对象,而 EBO(Element Buffer Object)是指图元索引缓冲区对象,VBO 和 EBO 实际上是对同一类 Buffer 按照用途的不同称呼。
VBO(Vertex Buffer Object)是指顶点缓冲区对象,而 EBO(Element Buffer Object)是指图元索引缓冲区对象,VAO
新知系列课程第二季来啦!我们将为大家带来全真互联时代下新的行业趋势、新的技术方向以及新的应用场景分享。本期我们邀请了腾讯云音视频技术导师——张伟男,为大家分享腾讯特效引擎在终端的应用和实践。 本次分享会为大家介绍腾讯特效引擎的架构方案设计和特效处理流程,跨平台开发过程中遇到的一些实际问题以及特效引擎SDK集成过程中可能遇到的问题和解决方案。 特效引擎架构设计 考虑到特效引擎SDK有支持多平台的需求,团队在设计的过程中既要保持各端能力的统一,又要支持很好的平台可扩展性以便未来能接入更多的平台。因此,我们设计
前两章,其实我们已经明白了绘制平面图形的套路了。 接下来我们按照套路继续画其他的图形。
目前市面上的滤镜有很多,但整体归类也就几样,都是在fragment shader中进行处理。目前滤镜最常用的就是 lut滤镜以及调整RGB曲线的滤镜了。其他的类型变更大同小异。
之前写了一篇 PixiJS 绘制矩形,简单说了一下 PixiJS 是怎么绘制矩形的。
领取专属 10元无门槛券
手把手带您无忧上云