首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    教程 | 基础入门:深度学习矩阵运算的概念和代码实现

    选自Medium 机器之心编译 参与:蒋思源 本文从向量的概念与运算扩展到矩阵运算的概念与代码实现,对机器学习或者是深度学习的入门者提供最基础,也是最实用的教程指导,为以后的机器学习模型开发打下基础。 在我们学习机器学习时,常常遇到需要使用矩阵提高计算效率的时候。如在使用批量梯度下降迭代求最优解时,正规方程会采用更简洁的矩阵形式提供权重的解析解法。而如果不了解矩阵的运算法则及意义,甚至我们都很难去理解一些如矩阵因子分解法和反向传播算法之类的基本概念。同时由于特征和权重都以向量储存,那如果我们不了解矩阵运算

    013

    存内领域前沿,基于忆阻器的存内计算----浅析忆阻存内计算

    此时 ,生成的氧空位形成导电细丝 ,阻变效应忆阻器从高态转变到低阻态。SET 过程与此相类似 ,但由于 Forming 之后阻变效应忆阻器内部缺陷较多,所以需要的电压相对较小。在RESET过程中 ,在其两端施加反向电压 ,氧原子从阴极迁移出来 并与形成导电细丝的阴极附近的氧空位复合,造 成导电细丝无法与电极相连接 ,阻变效应忆阻器从低阻态转变到高阻态。对于非导电细丝类型的阻变效应忆阻器 ,其阻变是由于缺陷在电场作用下迁移 , 使得器件界面内肖特基势垒或隧穿势垒发生均匀变 化而导致的 。 阻变效应忆阻器有单双极性两类阻变模式之分,如图 4 所示。对于双极性阻变模式而言 ,阻变现象是发生在不同极性的电压下的 ,即 SET/RESET 分别在相反的电压极性下发生。而对于单极性阻变模式 ,阻变现象与电压极性无关 ,只与电压幅度相关 。

    01

    麦克风声源定位原理_一种利用麦克风阵列进行声源定位的方法与流程

    20世纪80年代以来,麦克风阵列信号处理技术得到迅猛的发展,并在雷达、声纳及通信中得到广泛的应用。这种阵列信号处理的思想后来应用到语音信号处理中。在国际上将麦克风阵列系统用于语音信号处理的研究源于1970年。1976年,Gabfid将雷达和声纳中的自适应波束形成技术直接应用于简单的声音获取问题。1985年,美国AT&T/Bell实验室的Flanagan采用21个麦克风组成现行阵列,首次用电子控制的方式实现了声源信号的获取,该系统采用简单的波束形成方法,通过计算预先设定位置的能量,找到具有最大能量的方向。同年,Flanagan等人又将二维麦克风阵列应用于大型房间内的声音拾取,以抑制混响和噪声对声源信号的影响。由于当时技术的制约,使得该算法还不能够借助于数字信号处理技术以数字的方式实现,而主要采用了模拟器件实现,1991年,Kellermann借助于数字信号处理技术,用全数字的方式实现了这一算法,进一步改善了算法的性能,降低了硬件成本,提高了系统的灵活性。随后,麦克风阵列系统已经应用于许多场合,包括视频会议、语音识别、说话人识别、汽车环境语音获取、混响环境声音拾取、声源定位和助听装置等。目前,基于麦克风阵列的语音处理技术正成为一个新的研究热点,但相关应用技术还不成熟。

    02

    光场相机能否用于SLAM?

    本人研究生期间一直进行光场相机深度恢复的工作,深知其优势与不足。SLAM是我参加工作以来从事的研究方向,经过两年多的摸爬滚打算是入门了。目前视觉SLAM理论上虽已比较成熟,但在实际使用中仍会遇到诸多问题,如容易受到环境因素如光照/动态物体/稀疏纹理/室外大场景/快速运动等因素的影响,这些问题仅使用传统相机似乎无法有效解决。而光场相机相较于传统相机能够记录同时记录光线的方向与强度,这使我们可以通过计算成像得到一些列虚拟视角的图像。简单来说就是单目光场相机实现了虚拟多目的效果,但这些虚拟视角间的基线距非常小,测距范围有限,预期无法获得长距离的深度信息。

    02

    CMU阵列:3D打印实现对大规模高密度电极阵列定制化

    微电极阵列在记录电生理活动方面发挥了巨大作用,是脑功能研究的重要手段。然而目前大多数微电极的应用都受制于覆盖范围、脆性和费用方面的局限性。来自卡耐基梅隆大学的研究团队最近开发了利用3D纳米颗粒打印方法定制微电极的方法,并且在活体记录方面取得了出色的结果。这种可定制的3D多电极设备具有高电极密度,最小的肉眼组织损伤和优秀的信噪比。最重要的,3D打印的定制方法允许灵活的电极重构,例如不同的个体柄长度和布局,降低了总体通道阻抗。这种有效的设备设计使得在整个大脑中有针对性地和大规模地记录电信号成为可能,该技术发表在《Science Advances》上。

    01
    领券