根据这种观点,确定最佳行动方案或最佳决策策略是一种与概率推理截然不同的问题,尽管潜在的动力系统仍然可以用概率图模型来描述。...将决策形式化为概率图模型中的推理,原则上可以使我们得以应用广泛的近似推理工具,以灵活而有力的方式对模型进行扩展,并对模型的组合性和部分可观测性进行推理。...所有这些方法都包括将控制或强化学习明确或隐含地表述为 PGM,然后部署来自 PGM 文献的学习和推理方法以解决由此产生的推理和学习问题。...虽然控制的特殊变分推理解释与以往的研究有所不同,但本文的目的并不是要提出一种从根本上看待控制与推理之间联系的新方法。...然而,在算法设计中考虑这样的联系还是有价值的:在原则上将一个问题形式化为概率推断,使我们能应用多种近似推断工具,将模型以灵活、强大的方式进行扩展,并对组合性和部分可观测性进行推理。
大家在训练深度学习模型的时候,有没有遇到这样的场景:分类任务的准确率比较高,但是模型输出的预测概率和实际预测准确率存在比较大的差异?这就是现代深度学习模型面临的校准问题。...在很多场景中,我们不仅关注分类效果或者排序效果(auc),还希望模型预测的概率也是准的。...因此模型会倾向于over-confident,即对于样本尽可能的让模型预测为正确的label对应的概率接近1。模型过拟合交叉熵,带来了分类准确率的提升,但是牺牲的是模型输出概率的可信度。...本文定义的MMCE原理来自评估模型校准度的指标,即模型输出类别概率值与模型正确预测该类别样本占比的差异。...文中也对比了Mixup和CutMix的效果,Mixup由于每个位置都进行插值,容易造成区域信息的混淆,而CutMix直接进行替换,不同区域的差异更加明确。
CNN史上的一个里程碑事件是ResNet模型的出现,ResNet可以训练出更深的CNN模型,从而实现更高的准确度。...ResNet模型的核心是通过建立前面层与后面层之间的“短路连接”(shortcuts,skip connection),这有助于训练过程中梯度的反向传播,从而能训练出更深的CNN网络。...而且DenseNet是直接concat来自不同层的特征图,这可以实现特征重用,提升效率,这一特点是DenseNet与ResNet最主要的区别。 ?...对于使用bottleneck层的DenseBlock结构和压缩系数小于1的Transition组合结构称为DenseNet-BC。...这里有一份详细指南 【2】CNN模型之SqueezeNet 【3】CNN模型之ShuffleNet 【4】Object Detection系列(三) Fast R-CNN 【5】ResNet, AlexNet
极大似然估计是对概率模型参数进行估计的一种方法,例如有一个包含N个样本的数据,数据集中每个样本都是从某个未知的概率分布pdata(x)中独立采样获得的,若我们已经知道pg的形式,但是pg的表达式里仍包含未知参数...似然函数是一个关于模型参数θ的函数,当选择不同的参数θ时,似然函数的值是不同的,它描述了在当前参数θ下,使用模型分布pg(x;θ)产生数据集中所有样本的概率。...一个朴素的想法是:在最好的模型参数θML下,产生数据集中的所有样本的概率是最大的,即 ?...很多生成模型可以使用最大似然的原理进行训练。只要得到关于参数θ的似然函数L(θ)后,我们只需最大化似然函数即可,只是不同模型的差异在于如何表达或者近似似然函数L(θ)。...下图的左边分支均为显式概率模型,其中完全可见置信网络模型对pg(x;θ)做出了形式上的假设,而流模型则通过定义一个非线性变换给出了pg(x;θ)的表达式,这两个模型其实都给出了似然函数L(θ)的确定表达式
不同的是它没有借助于贝叶斯公式,而是直接根据特征向量x估计出了样本是正样本的概率 ? 如果这个概率值大于0.5,就被判定为正样本,否则是负样本。这里的参数w和b通过最大似然估计得到。...不幸的是,单个高斯分布的建模能力有限,无法拟合多峰分布(概率密度函数有多个极值),如果将多个高斯分布组合起来使用则表示能力大为提升,这就是高斯混合模型。...由此可以得到梯度上升法的迭代公式 ? 均值漂移算法简单而优美,当年在目标跟踪领域取得了令人刮目相看的效果。 概率图模型 概率论 + 图论 = 概率图模型 概率图模型是概率论与图论相结合的产物。...与马尔可夫模型相比,隐马尔可夫模型不仅对状态建模,而且对观测值建模。不同时刻的状态值之间,同一时刻的状态值和观测值之间,都存在概率关系。 隐马尔可夫模型可以表示为五元组 ?...问题的核心是如何找到这个映射g(z)。深度生成模型的典型代表-生成对抗网络,以及变分自动编码器,通过不同的路径实现了这一功能。
您可以找到我用来从Jupyter Notebook中加载此项目的数据的代码。 ? 数据清洗 因为原始数据集包含许多空值,以及不同的大小写,例如('Free'与'free')。...建立基线模型 现在我们进入该项目最有趣的部分,但首先我们导入在AWS进行数据清洗后的特征并建立基线模型,以便我们可以将其与将来的模型进行比较。...特征工程 由于该项目的重点是利用手头的可用数据获得最佳模型,因此我们将不得不在迭代过程中尝试使用不同的特征工程方法。 以下是我在此项目中使用的三种有效方法,尽管过程绝对不那么顺利。...特征结合 我编写了一个自定义算法来探索不同的特征组合,看这样做是否可以提高模型分数: def explore_fe(df, target): ''' A function to do exploratory...我们最终制作了一个比基线模型稍好的模型。我对这个基于有限数据的模型很满意,但我们还并没有完成,让我们试着通过调整阈值使它变得更好。
CNN模型的发展:自2012AlexNet-2017DRN的17篇CNN模型论文总结 深度学习最为根本的CNN模型架构,最基础的知识,深度学习研究者必学知识,了解一下?...卷积神经网络是深度学习的基础,尤其在计算机视觉领域发挥着重要的作用,从上世纪90年代的开山之作LeNet,到2012年的兴起之作AlexNet,从VGG,GoogLeNet再到ResNet和最近的DenseNet...下面我们便来看一下自2012AlexNet-2017DRN的网络特点吧。 这些都是以ImagNet数据集为基础的模型设计。...CNN模型的发展,2012-2017年的发展,2012AlexNet-2017DRN的17篇CNN模型论文总结。 ? ?...以上是这17篇文章的总结,稍后将会陆续推出各篇论文的详细架构,可能会稍晚一些,欢迎大家继续关注。
而推断统计用到了很多概率统计方法,所以本小节在介绍推断统计的内容前,还将讲述一些常用的概率统计方法。...从统计学的角度来分析,样本密度越大的数值区域,接下来的数据出现在这里的概率也就越大。...一般只考虑出现第一类错误的最大概率α,而不考虑出现第二类错误的概率β,这样的假设检验就叫显著性检验,其中出错概率α叫显著性水平。...在第6行里,输出了股票收盘价的均值,约为15.5,在第7行到第11行里,提出了不同的关于收盘价均值的假设,并通过stats模块里的ttest_lsamp方法,对不同的假设进行了t检验。...上述输出结果的第1行表示序列的均值,从第2行到第6行的pvalue结果里,能看到对不同假设的验证结果,详细说明请参考下表里的内容。
AIModelRouter AI模型路由,模型的能力有大小之分,有些简单任务,能力小一点的模型也能很好地完成,而有些比较难的或者希望模型做得更好的,则可以选择能力强的模型。为什么要这样做呢?...可以降低AI模型的使用成本,毕竟能力强的模型会更贵一点,省着用挺好的。 Semantic Kernel中可以很简便地使用一个AIModelRouter。...实践 先来一个简单的例子 来自https://github.com/microsoft/semantic-kernel/tree/main/dotnet/samples/Demos/AIModelRouter...,如果不包含就选择第一个服务ID对应的模型进行回复。...实际上这样使用,很容易让AI迷惑,因为我们总是要带上一个ServiceId,如果让AI根据用户的提问,自己决定用哪个模型是更好的。
方法非常多,这里就简单介绍非常常用的几个方法: (1)、getDate() 从 Date 对象返回一个月中的某一天 (1 ~ 31)。...更多Date对象方法,请点击: JavaScript中Date对象的那些事儿 这里,我们获取到当前时间是白天或者夜晚后,直接根据变量,添加class选择器,根据选择器设置不同背景图片即可。...,晴、多云、阴、雨、雷、雪,简单的6个场景,如果觉得不够全面,可以根据高德提供的天气枚举,做的更详尽,这里只是简单举例。...weatherNum就是我们根据天气分配不同场景的依据。 vue 组件(组件传值等) ?...,这里只是运用了一下,所以,大家如果要学习的更通透,可以多看看以前的文章。
基于BG/NBD概率模型的用户CLV预测 小P:小H,我们最近想预测下用户的生命周期价值,有没有什么好的方法啊? 小H:简单啊,用户每月平均花费用户平均寿命。...小P:额,你懂的模型那么多,就不能直接利用算法预测每个用户的CLV吗? 小H:这...,那好吧,有个BG/NBD概率模型可以依据用户的RFM进行预测 如果你想知道用户是不是流失了呢?...BG/NBD概率模型都可以解决。但是该模型不能预测周期性消费的客户,因为它只关注T时段内的交易。...() output_21_0 暖红色为大概率存活的用户 冷蓝色为大概率流失的用户 预测下个时期的购买量 # 预测用户下个时期(t)的预期购买量 t = 30 df_model_finall['predicted_purchases...模型预测的效果在0-4次较为接近,在5、6购买预测存在低估情况 总结 这个模型实际只依赖RFT进行训练和预测,虽然大多数消费数据的概率分布服从假设,但是在使用时应该结合业务数据进行预测效果验证,毕竟和钱相关的任务都是很重要的
sets ”,德州农机大学的Yang Shen课题组首次提出药物组合的深度生成模型。...状态空间(state space) G是K个图的集合,每个图有不同数目和类型的节点或边。迭代过程中中记录图集的中间变化状态Gt。...模型是利用不同的奖励机制、疾病集合和动作空间,将提出的强化模型分为三个阶段进行训练,利用HVGAE生成的疾病表征,逐渐关注目标疾病。...第一阶段生成遵循化学有效性奖励、亲脂性奖励以及针对单个化合物的新对抗奖励机制的高亲脂性的类药物小分子;第二阶段在第一阶段的模型预训练的基础上使其在所有疾病中产生良好的药物组合,模型添加了基于网络原理的化合物组合的奖励...,依次为每种疾病(299种)生成药物组合,每次迭代都为给定疾病生成8种药物组合;与第二阶段针对所有疾病不同,第三阶段是针对特定疾病的。
CNN学习:如何计算模型的感受野? ? 阅读论文时常常看见论文中说感受野的大小,对于有些问题,需要了解更多的上下文信息,则需要相对大的感受野。那么,这里的感受野是什么意思呢?...感受野可以理解为卷积神经网络输出的feature map中一个像素点对应的原图片中区域的大小,或者说feature map中的一个像素点的值是受原图片中的多大的区域影响的,也可以间接地模型融合上下文信息的多少...这里的ksize是卷积核大小,stride是每一层的stride, RF是感受野大小 函数: def receptiveField(net, n_layers): for layer in range...RF = 1 ksize, stride, pad = net[layer] RF = ((RF-1)*stride) + ksize return RF 示例: 以下面的这个网络为例,计算网络的感受野...,若计算中间某一层的感受野,则将那一层从1开始计算 计算得到该网络在图片上感受野为70*70,这也是pix2pix中patchGAN的原理
而且,这个机器人只需要一个单一的预训练模型,就能从不同的感官输入 (如视觉、文本等)中生成命令,来执行多种任务。...要知道,在以往机器人执行命令时,处理这些不同的任务时, IO 规范、神经网络体系结构和目标等都是不一样的。...现在,这个问题谷歌解决了,他们研究出了适用于机器人领域的Transformer模型:RT-1,甚至被人戏称为RoboGPT。 △图源:推特@Jim Fan 更重要的是,RT-1代码已开源!...并与其他基于模仿学习的基线进行比较,结果如下图所示(第一项为训练期间的表现)。 显而易见,在每个任务类别中,RT-1都明显优于以前的模型。...研究团队 这个机器人来自谷歌,研究团队的成员也比较庞大,分别来自三个研究团队: 首先是Robotics at Google,它是Google Research下的一个细分领域团队,目前正在探索“如何教机器人可转移的技能
原文地址:Landsat8的不同波段组合说明 作者: ENVI-IDL中国 Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括...9个波段,可以组合更多的RGB方案。...如表1是国外公布的OLI波段合成的简单说明。表2是前人在长期工作中总结的Landsat TM(ETM+)不同波段合成对地物增强的效果。对比表3,可以将表1和表2的组合方案结合使用。...图2-图5为几个RGB组合。...图1:数据管理面板 图2:7、6、4,水体和植被得到了增强 图3:6、5、2,裸地得到增强,可以与有作物的耕地区分 图4:5、 6、 2,植被呈现不同颜色 图5:6、5、4,植被非常鲜艳
概率模型 根据现有搜集的数据做估算,假设一个文档被用户看到了,如果文档被用户点击进去,那么认为是相关的,否则不相关[只认为相关和不相关],那么在特定的查询情况下,便可得到这种点击比例。...无法处理用户没有看过的文档以及没有过的查询 企业微信截图_15626513457190.png 概率模型的核心思想就是,假设当前文档是某个用户想要的,那么这其中有多大的概率表明这个查询是来自于此特定用户...这种模型最简单的情况就是 Unigram LM Unigram LM 假设所有单词都是互相独立的,那么单个句子成立的概率就是每个单词出现的概率。....png 使用Unigram LM 可能性查询 给定一个查询,根据Unigram LM的规则,它可以被拆分成单个单词的概率乘积 企业微信截图_15626515953190.png 因而可以对不同的文档做概率排列...与VSM比较 VSM通过计算查询与文档之间的相似性,通过点积来计算大小并归一化之后来作为排序依据; 概率模型是统计总的次数作为概率预估[有通用的文档库计算,以及具体的文档库],最简单的方式是给所有的单词概率做乘积来做排序计算
来源:PCS 2021 主讲人:Fatemeh NASIRI 内容整理:冯冬辉 本文来自 PCS2021 Special Session 1 的第 4 场演讲,介绍了一种 CNN 多模型选择的后处理滤波方案...提出的后处理框架 该方法为帧内(Intra)编码和帧间(Inter)编码的帧训练量不同的模型,对于 Intra 模型,使用了预测图像、QP 和解码图像来输入 CNN,在训练时逼近未编码图像。...Intra 模型 Inter 模型 为了解决这一问题,讲者提出了 4 个 CNN 模型,其中两个 Intra 模型,两个 Inter 模型,以不同的信息训练,并且以模型选择处理。...在编码端,将视频帧分块,对每个块选择 MSE 最优的增强模型,并传输该模型的序号。在解码端通过序号选择不同的增强模型。 训练的四个模型 模型选择框架 下图展示了所使用的网络模型。...与现有方法的性能比较 讲者在最后总结道: CNN 质量增强方法可媲美手工设计的滤波器; 使用编码信息可以有效帮助 CNN 学习压缩伪影,其中预测信息,帧类型和 QP 信息较为有效; 模型选择策略有效。
在上一篇文章结尾,我们提到了,与使用SGD(随机梯度下降)和冲量训练的模型相比,L-BFGS方法产生不同误差的解决方法。...所以,有一个问题就是什么样的解决方法泛化能力最强,而且如果它们关注的方向不同,那么对于单个方法它们又是如何做到泛化能力不同的。...SGD方法(I)使用标准的冲量项并且在组合mini-batches时将L1的惩罚值设置为0.0005。同时,学习率和冲量项保持在一个固定的值。L-BFGS方法(II)则最小化相同的损失误差。...抛开模型真正的优化方法,这些模式都被这两种模型学到了,但同时带有轻微的差异,这可以通过考虑W中单个权重重要性看出。然而,正如参数向量相关性证实的那样,两个解决方法是非常相近的。...接下来,我们将研究模型对未知数据的泛化能力。
从上面这个表格里,我们可以看出来,两个孩子的性别组合一共有4种。其中至少有一个女孩的是三种,而这三种当中,两个孩子都是女孩的有一种。所以答案就是1/3。...还是之前题目里的夫妻,还是那两个孩子(至少有一个是女孩)。不同的是,假设有一天我们在公园碰见了这一对夫妻。不过,与此同时,夫妻还带了一个孩子。...我们遇见一个女孩的条件下,两个都是女孩的概率是 ? 这里潜在的信息是,我们在公园遇见一个孩子,他是男是女的概率是不同的。我们遇见了女孩,会改变剩下一个孩子是女孩的概率。...这样理解都行得通,但还是没有解决我们之前的疑惑,为什么看起来完全一样的两件事,得到的结果不同呢?就因为我们看到了其中的一个孩子吗?可是我们看到孩子,与孩子的性别的概率应该无关才对。...我们看孩子之前,两个孩子是一体的,我们看了一眼之后,这两个孩子就区分开来了。我们看之前,这是两个孩子,看了之后,就成了我们看过的孩子和没看过的孩子。从物理学上来看,这两者的熵是不同的。
文中讨论了当要识别的对象出现在图像中的不同位置时,CNN 是如何应对、识别的。Pete Warden 给出的解释也许算不上完善,而且也仍然无法保证能够消除位置的影响,但这是一个不错的开始。...一位正在学习用卷积神经网络做图像分类的工程师最近问了我一个有趣的问题:模型是如何学会辨别位于图片中不同位置的物体的呢?...模型始终都会依据预测的准确性得到惩罚或是奖赏,所以为了获得好的评分它必须在带有这些不同的状况下还能猜出图片里的物体。这解释了为什么神经网络会学习如何处理位置差异。 但这还没有结束。...图片来自 Evan Shelhamer 对 Caffenet 的可视化工作 这张图展示的是每个过滤器所要查找的内容,有些是不同走向的边,其他的是色彩或角。...在仅有一个或两个条件满足的通道组合所在的位置,不会有输出,只有当满足所有条件的通道组合(只有在那些满足全部三个条件的位置),输出会呈现激活状态。
领取专属 10元无门槛券
手把手带您无忧上云