首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

组合独立的时间测量序列

是指将多个独立的时间测量序列合并在一起进行分析和处理的方法。这种方法可以用于各种领域的数据分析,包括金融、物流、能源等。

优势:

  1. 组合独立的时间测量序列可以提供更全面的数据信息,帮助我们更好地理解和预测事件的发展趋势。
  2. 通过组合不同的时间测量序列,可以发现它们之间的关联性和相互影响,从而提供更准确的分析结果。
  3. 可以通过对组合后的时间测量序列进行统计分析和模型建立,来预测未来的趋势和变化。

应用场景:

  1. 金融领域:组合独立的时间测量序列可以用于股票价格预测、投资组合优化等。
  2. 物流领域:可以用于货物运输时间预测、路线优化等。
  3. 能源领域:可以用于电力负荷预测、能源消耗分析等。

推荐的腾讯云相关产品: 腾讯云提供了一系列的数据分析和处理产品,可以帮助用户进行组合独立的时间测量序列的分析和处理。以下是一些推荐的产品:

  1. 云数据库 TencentDB:腾讯云的云数据库产品,提供了高性能、可扩展的数据库服务,可以存储和管理时间测量序列数据。
  2. 云服务器 CVM:腾讯云的云服务器产品,提供了弹性的计算资源,可以用于进行数据分析和处理的计算任务。
  3. 云函数 SCF:腾讯云的云函数产品,可以帮助用户快速部署和运行代码,用于处理时间测量序列数据。
  4. 云监控 Cloud Monitor:腾讯云的云监控产品,可以实时监控和分析时间测量序列数据,提供报警和告警功能。
  5. 人工智能 AI:腾讯云的人工智能产品,可以用于对时间测量序列数据进行智能分析和预测。

以上是一些腾讯云的相关产品,可以帮助用户进行组合独立的时间测量序列的分析和处理。更多产品信息和详细介绍可以参考腾讯云官方网站:https://cloud.tencent.com/

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

NeuroImage:磁共振3D梯度回波磁化转移序列同时对铁和神经黑色素进行成像

早期帕金森病(PD)的诊断仍然是临床上的一大挑战。以往的研究仅用黑质(SN)中的铁、神经肽(NM)或黑体-1(N1)征本身并不能为这些方法的临床应用提供足够高的诊断性能。本研究的目的是利用单个三维磁化传递对比(MTC)梯度回波序列提取代表整个SN的NM复合体体积、铁含量和体积,以及N1征作为潜在的互补成像生物标志物,并评估它们在早期PD中的诊断性能和临床相关性。对40例早期特发性帕金森病患者和40例年龄、性别匹配的健康对照(HCS)进行3T扫描。使用动态编程(DP)边界检测算法半自动地确定NM边界(代表SN部致密区(SNPC)和脑桥臂旁色素神经核)和铁边界(代表总SN(SNPC和SN网状部))。受试者操作特性分析用于评估这些成像生物标志物在早期帕金森病诊断中的作用。应用相关分析研究这些影像指标与临床评分的关系。我们还引入了NM和总铁重叠体积的概念,以证明NM相对于含铁SN的损失。此外,所有80例患者均独立评估N1征象。PD组SN中NM和SN体积低于HCS组,而SN中铁含量高于HCS组。有趣的是,双侧N1信号缺失的帕金森病患者的铁含量最高。单项测量的两个半球的平均值的曲线下面积(AUC)值为:NM复合体体积为0.960;SN总体积为0.788;SN铁含量为0.740;N1标志为0.891。通过二元Logistic回归将NM复合体体积与以下测量中的每一项相结合,得到了右侧和左侧的平均0AUC值:总铁含量为0.976;总SN体积为0.969,重叠体积为0.965,N1符号为0.983。我们发现SN体积与UPDRS-III呈负相关(R2=0.22,p=0.002)。虽然N1标志表现良好,但它不包含任何有关铁含量或NM数量的信息,因此,将该标志与NM和RON测量结合起来,可以更好地解释当N1标志在PD受试者中消失时发生的情况。总之,从单个MTC序列得出的NM复合体体积、SN体积、铁含量和N1征的组合为理解和诊断早期PD提供了补充信息。

00
  • Nature neuroscience:功能脑组织表征的挑战和未来方向

    摘要:大脑组织的一个关键原则是将大脑区域的功能整合成相互关联的网络。在休息时获得的功能MRI扫描通过自发活动中的相干波动模式,即所谓的功能连接,提供了对功能整合的见解。这些模式已被深入研究,并与认知和疾病有关。然而,这个领域是细分的。不同的分析方法将对大脑进行不同划分,限制了研究结果的复制和临床转化。这种划分的主要来源是将复杂的大脑数据简化为用于分析和解释的低维特征集的方法,这就是我们所说的大脑表征。在本文中,我们提供了不同大脑表征的概述,列出了导致该领域细分和继续形成汇聚障碍的挑战,并提出了统一该领域的具体指导方针。 1.简述 静息态MRI的研究领域是分级的,关于预处理流程、脑分区方法、后处理分析方法和端点都存在争议。这个问题的主要来源是脑表征的挑战。磁共振产生大量的高维数据,一个主要的分析任务是从测得的脑活动的巨大的复杂度中提取可解释的内容。此处我们用“脑表征”来描述这个降维过程。脑表征是一个采集的MRI数据的多层面描述,包括脑单元的空间定义(分区)和在脑单元水平提取可解释特征的总体测度(如配对相关)。如何表征脑数据从根本上奠定了脑功能和组织的描述。 脑的表征经常被考虑为映射问题,旨在消除功能和神经组织的神经解剖不同区域的边界。然而,脑表征包括了表征形式以及数据如何转化成这些表征。本文旨在为该领域的一致性和可重复性提供一个rfMRI表征挑战的入门。 2.脑表征入门 脑表征可以将采集得到的BOLD数据减少为一组特征进行分析。许多脑表征识别:1)一组低维脑单元(空间分区)2)应用在脑单元水平的一组测度组合(配对相关)。这些特征用于后面的统计或预测分析。用“脑单元”来指代任意空间上定义的神经实体,可以被当作一个基础的功能处理单元。“测度组合”作为计算特征的方法,相对于脑单元定义。组合测度用来回答研究问题,因此是相对“特定领域”的。一小部分脑表征不用脑单元和组合测度,而用估计特征,可以代表活动的复杂的时空模式。 2.1定义一个脑单元 rfMRI空间分辨率轻松可达2x2x2mm³,这会在全脑得到约100000体素。rfMRI中,这些体素(或顶点)是最小的可测脑单元。然而其并不代表具体的神经解剖层级水平。因此会将体素或顶点单元组合成更小的脑单元集合来实现有意义的低等级脑表征。 脑单元可能在空间上相邻或不相邻。相邻脑单元与功能具体皮层区域一致(图1a),不相邻脑单元可以捕捉层级组织的和大的半球对称脑的复杂网络结构(图1b)。脑单元可以是二值化(一个体素或顶点被分配到一个单元)的或加权的(体素或顶点根据其权重对多个单元有贡献)。 很多方法可以来定义脑单元。明显的选择是根据基于组织学、病变、褶皱或其他特征定义的图集的分区。但这些图集源于小部分人,且解剖上定义的边界与功能组织不一定匹配。很多方法用功能数据来定义分区,包括ICA,PCA,非负矩阵分解,概率功能模块或字典学习。这种分区依赖于自发BOLD波动,限制了其适用性。用解构、静息、任务结合的多模态方法可能提供广泛性更好的分区。

    00

    功能连接体指纹的特征选择框架

    基于功能连接组(FC)来独特描述个体特征的能力是迈向精确精神病学的关键要求。为此,神经成像界对FC指纹进行了越来越多的研究,开发了多种有效的FC指纹识别方法。最近的独立研究表明,在大样本尺寸和较粗的分区用于计算FC时,指纹识别的精度会受到影响。量化这一问题,了解这些因素影响指纹准确性的原因,对于开发更准确的大样本量指纹提取方法至关重要。指纹识别的部分挑战在于,FC既能捕捉通用信息,也能捕捉特定个体的信息。一种识别特定个体FC信息的系统方法对于解决指纹问题至关重要。在本研究中,我们解决了我们对FC指纹识别问题的理解中的三个空白。首先,我们研究了样本量和分区粒度的联合效应。其次,我们解释了随着样本量的增加和分区粒度的减小,指纹识别精度降低的原因。为此,我们使用了来自数据挖掘社区的聚类质量指标。第三,我们开发了一个通用的特征选择框架,用于系统地识别静止状态功能连接(RSFC)元素,该元素捕获信息,以唯一地识别主体。综上所述,我们从这个框架中评估了六种不同的方法,通过量化受试者特定指纹的准确性和随着样本量增加而降低的准确性,以确定哪种方法对质量指标的改善最大。

    03

    Nature Communications:人类大脑的皮层下-皮层的动态状态及其在中风中的损伤

    控制大脑自发活动中的动态模式的机制尚不清楚。在这里,我们提供的证据表明,在超低频率范围内(<0.01-0.1Hz)的皮层动力学需要完整的皮层-皮层下通信。利用静息态功能磁共振成像(fMRI),我们确定了动态功能状态(DFSs),在超低频率下同步的短暂但周期性的静止区域簇。我们观察到,皮层簇的变化与皮层下簇的变化在时间上相一致,皮层区域与边缘区域(海马体/杏仁核)或皮层下核(丘脑/基底神经节)灵活同步。中风引起的局灶性病变,特别是那些基底神经节/丘脑和皮质之间的白质连接,引起DFSs之间的时间分数、逗留时间和转换的异常,导致异常网络整合的偏向。卒中后2周观察到的动态异常会及时恢复,并有助于解释神经功能损伤和长期预后。

    02

    新年,向新时代的量子计算机致敬

    在科学技术浪潮不断更迭发展的今天,我们再次讨论计算机,已经需要将计算机分为经典计算机和量子计算机了。经典计算机就是我们现在常规意义上的计算机,基于冯·诺依曼体系架构。经典计算机在我们的世界已经存在太长时间,解决了很多问题,比如计算两个数的乘积。但是反过来,计算某个数是哪两个数的乘积?经典计算机就比较麻烦,必须得使用穷举法来进行枚举,所以当需要计算的数字很大的时候,就需要很多的计算量,如果要足够快,就必须使用超级计算机等来加快速度。而量子计算机就是解决这种问题的,使用量子计算机直接就可以秒算出今天需要超级计算机计算数天甚至数月的这类问题。此外,当今我们的计算问题上,已经完成数据积累和数据初始阶段,计算上升到大数据计算和优化的问题上,也就是说我们需要计算出很多种可能性,并且找出当前最优的可能性。这种计算最优解的问题是量子计算机出现的意义和价值所在,也是当前人工智能的计算需要解决的问题,所以从历史发展和科技进步来看,我们的计算已经到了另外一个高度,由经典计算机进入量子计算机。有很多的实例可以证明经典计算机已经处于历史的边缘,新生代的计算体系已经诞生。

    02

    追踪任务期间fMRI功能连接的空间动态

    功能磁共振成像(fMRI)测量的功能连通性(FC)为探索大脑组织提供了一个强有力的工具。脑组织的时间动力学研究表明,功能连接体具有很大的时间变异性,这可能与心理状态的转变和/或适应过程有关。大多数动态研究,如功能连接体和功能网络连接(FNC),都关注于宏观的FC变化,即不同脑网络来源、节点和/或感兴趣区域的时间相干性变化,其中假设在网络或节点内FC是静态的。在本文中,我们发展了一种新的方法来检查FC的空间动力学,而不假设其网络内的平稳性。我们将我们的方法应用于22名受试者的听觉oddball任务(AOD)中的fMRI数据,试图通过评估空间连通性是否随任务条件而变化来捕获/验证该方法。结果表明,除了参与传统的时间动态,如跨网络变异性或动态功能网络连通性(dFNC),连接网络还表现出随时间的空间变异性。此外,我们还通过聚类分析评估个体对AOD任务中目标(oddball)检测的功能对应关系,研究了FC的空间动态与认知过程的关系。提取认知任务对应状态,并分离对应状态的动态FC空间图。在不同的任务引导的状态下,任务刺激同步状态随着默认模式网络(defaultmode network, DMN)与认知注意网络强的负相关关系显著降低。我们还观察到越来越多的任务异步状态,这种状态表现出没有DMN的反相关。研究结果强调了认知任务对观察到的空间动态结构的影响。我们还发现,我们方法得到的FC空间动态模式与宏观dFNC模式基本一致,但在空间上有更多的细节和规范,同时源内部的连通性提供了新的信息,并随时间而变化。总的来说,我们证明了(通常被忽视的)连接的空间动力学存在的证据,它与任务的联系和认知/心理状态的暗示。

    03

    FeTA2024——胎儿组织分割和生物测量

    先天性疾病是全球婴儿死亡的主要原因之一。胎儿脑部宫内 MRI 已开始成为研究先天性疾病胎儿神经发育的宝贵工具。胎儿 MRI 有助于未来开发临床风险分层工具,用于早期干预、治疗和临床咨询。此外,胎儿 MRI 是描绘人类妊娠期间复杂神经发育事件的有力工具,这些事件仍有待完全表征。获取和分析胎儿脑部宫内 MRI 需要专业临床中心的合作,因为这些脆弱患者群体的图像队列很小且异质性(例如,不同站点之间的图像采集参数存在差异)。在大多数使用胎儿 MRI 的专业临床中心,评估仅使用从厚 2D 切片采集中获得的 2D 生物特征测量值进行,尽管最近的研究已经证明了在 3D 超分辨率重建体积中执行这些测量的能力。在 MRI 数据中,对出生前高度复杂且快速变化的大脑形态进行自动生物测量、分割和量化将改善诊断过程,因为手动注释既耗时又容易出现人为错误和评分者间差异。分析发育中的大脑结构的形状或体积等信息具有临床意义,因为许多先天性疾病会导致这些组织区室发生细微变化。现有的生长数据主要基于正常发育的大脑,缺乏许多病理和先天性疾病的生长数据。因此,跨不同扫描仪和图像采集协议自动量化发育中的人脑的稳健方法将是执行此类分析的第一步。从技术角度来看,胎儿大脑的自动分割方法需要克服许多挑战。在胎儿发育过程中,人脑的生理学会发生变化,同时其结构也会经历发育重组。此外,由于胎儿和母亲的运动以及成像伪影,图像质量通常较差 ,而部分容积效应经常导致组织之间边界模糊。最后,与健康对照组相比,异常胎儿大脑的结构通常具有不同的形态。这使得自动方法很难识别这些结构。到目前为止,由于成像方面的挑战以及缺乏公开、精选和带注释的真实数据,胎儿 MRI 领域的研究不足。为了增加样本量,使这些研究具有足够的功效,需要协调场地和 MRI 扫描仪,并结合自动化和强大的 MRI 分析方法。

    01

    NC:皮层微结构的神经生理特征

    在整个皮层中观察到微结构的系统空间变化。这些微结构梯度反映在神经活动中,可以通过神经生理时间序列捕获。自发的神经生理动力学是如何在整个皮层组织的,以及它们是如何从异质皮层微结构中产生的,目前尚不清楚。在这里,我们通过估计来自静息状态脑磁图(MEG)信号的6800多个时间序列特征,广泛地描绘了整个人脑的区域神经生理动力学。然后,我们将区域时间序列概况映射到一个全面的多模式,多尺度的皮质微结构图谱,包括微观结构,代谢,神经递质受体,细胞类型和层流分化。我们发现神经生理动力学的主导轴反映了信号的功率谱密度和线性相关结构的特征,强调了电磁动力学的常规特征的重要性,同时识别了传统上较少受到关注的附加信息特征。此外,神经生理动力学的空间变化与多种微结构特征共定位,包括基因表达梯度、皮质髓鞘、神经递质受体和转运体、氧和葡萄糖代谢。总的来说,这项工作为研究神经活动的解剖学基础开辟了新的途径。

    05

    【干货】机器学习工程师必须知道的十个算法

    【新智元导读】机器学习算法可以分为三个大类:监督学习、无监督学习、强化学习。监督学习对于有属性(标记)的特定数据集(训练集)是非常有效的。无监督学习对于在给定未标记的数据集(目标没有提前指定)上发现潜在关系是非常有用的。强化学习介于这两者之间——它针对每次预测步骤(或行动)会有某种形式的反馈,但是没有明确的标记或者错误信息。本文主要介绍有关监督学习和无监督学习的10种算法。 机器学习作为人工智能的一个子领域,在过去几年里无疑越来越受欢迎。大数据目前在科技行业是最热门的潮流,而机器学习在基于大量数据之上做出预

    06
    领券