首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    移到 Linux:网络和系统设置

    如果您使用无线网络,则在大多数发行版中都有一个菜单,可以在指示器面板中或在“设置”中(取决于您的发行版),您可以在其中选择无线网络的 SSID。如果网络受密码保护,它通常会提示您输入密码。...image.png 网络接口名称 在 Linux 下,网络设备有名称。 从历史上看,它们的名称分别为 eth0 和 wlan0 —— 或“以太网”和“无线网络”。...通过命令行进行网络管理 如果您希望更好地控制网络设置,或者如果您在没有图形桌面的情况下管理网络连接,则还可以从命令行管理网络。...请注意,用于在图形桌面中管理网络的最常用服务是“ 网络管理器(Network Manager)”,而网络管理器通常会覆盖在命令行上进行的设置更改。...在图形环境中的更改设置与在网络管理器中很类似,您还可以使用名为 nmtui 的工具从命令行更改网络管理器设置。

    1.9K20

    经典卷积网络--InceptionNet

    经典卷积网络--InceptionNet 1、InceptionNet网络模型 2、1 * 1的卷积运算是如何降低特征厚度?...完整实现(使用CIFAR10数据集) 借鉴点:一层内使用不同尺寸的卷积核,提升感知力(通过 padding 实现输出特征面积一致); 使用 1 * 1 卷积核,改变输出特征 channel 数(减少网络参数...1、InceptionNet网络模型   InceptionNet 即 GoogLeNet,诞生于 2015 年,旨在通过增加网络的宽度来提升网络的能力,与 VGGNet 通过卷积层堆叠的方式(纵向)相比...显然,InceptionNet 模型的构建与 VGGNet 及之前的网络会有所区别,不再是简单的纵向堆叠,要理解 InceptionNet 的结构,首先要理解它的基本单元,如图1.1所示。

    1K30

    卷积神经网络2.2经典网络

    Computer Science, 2014. 2.2 经典网络 LeNet-5 LeNet 针对的是单通道的灰度图像 原始图像为 的单通道灰度图像 第一层使用的是 个 的卷积核,步长为 1,...各网络层之间存在连接,每个卷积核的信道数和其输入的信道数相同。...讨论 AlexNet 网络比 LeNet-5 网络要大的多,LeNet-5 网络大约有 6 万个参数,AlexNet 网络包含约 6000 万个参数。这使得其能识别更多的特征。...AlexNet 网络比 LeNet-5 网络表现更为出色的另一个原因是因为它使用了 ReLU 激活函数 对于 AlexNet,其使用了 LRN 的结构(局部响应归一化),简单而言是在中间特征图中每一个点上所有信道的值进行归一化操作...具体网络结构如下图所示: ? 讨论 VGG-16 指的是这个网络包含 16 个卷积层和全连接层,总共包含 1.38 亿个参数。虽然网络较大,参数量多,但是结构并不复杂。网络结构十分规整。

    1.9K30

    打破专有系统的桎梏:5G网络的开放之路

    随着技术的不断变迁,专有无线接入网络的时代正在逐渐消失。...运营商希望能在降低成本的同时增加灵活性,其需要易于部署且经济实惠的网络网络组件,这也导致整个行业从4G专用硬件和专有软件开始转向安装在COTS硬件平台上的开放软件栈。...4G的专有组件 从核心网和RAN的角度来看待无线网络的话,核心网包括骨干网、城域网和区域网(图1)。...4G在很大程度上是通过运行专有软件栈的自定义硬件来实现的,这种方法对于4G网络来说是可以接受的,但是考虑到5G以及所需成本,运营商已经着手开发开源解决方案。...但是,核心的网络编排和自动化层确实需要软件来管理流程。LTE网络通过专有的硬件和软件来管理此任务。由于5G的成本限制,运营商开始寻找利用COTS硬件的标准化开源方案。

    1.2K30

    代码实践 | AdderNet(加法网络)迁移到检测网络(代码分享)

    记得前段时间“计算机视觉研究院”推送了一篇关于CVPR2020最佳分类的文献(链接:CVPR2020最佳目标检测 | AdderNet(加法网络)含论文及源码链接),其中有同学问可以把这个新的分类框架嫁接到检测网络...前景回顾 估计已经有同学忘记加法网络的框架和精髓了,我们先简单回归一下具体的框架细节。...因此,作者有动机研究用卷积神经网络中的加法代替乘法的可行性。...这样backbone就是一个模块,可以随意调用你想要的主干网络,而且还可以自己随意抽取对应的检测头,那接下来我们看看加法网络(AdderNet)的代码: 根据论文(链接:加法网络(AdderNet)...链接)修改对应的卷积,然后本次应用在ResNet50网络中,那我们再把ResNet50中的Conv替换,我们继续看下去: 接下来就是简单的环节了,替换修改好的Backbone网络,然后在相应数据集中训练测试

    48320

    经典分类网络结构

    学习目标 目标 知道LeNet-5网络结构 了解经典的分类网络结构 知道一些常见的卷机网络结构的优化 知道NIN中1x1卷积原理以及作用 知道Inception的作用 了解卷积神经网络学习过程内容...应用 无 下面我们主要以一些常见的网络结构去解析,并介绍大部分的网络的特点。...3.3.1.1 网络结构 激活层默认不画网络图当中,这个网络结构当时使用的是sigmoid和Tanh函数,还没有出现Relu函数 将卷积、激活、池化视作一层,即使池化没有参数 3.3.1.2 参数形状总结...,其实去了解设计网络最好的办法就是去研究现有的网络结构或者论文。...,称为“网络中的网络”(NIN),增强接受域内局部贴片的模型判别能力。

    1.3K20

    主机Redis服务迁移到现有Docker Overlay网络

    “《麻雀虽小,五脏俱全》之主机现有Redis服务迁移到Docker Swarm Overlay网络,并搭建高可用容器集群。...升级思路: 《Docker-compose搭建Redis高可用哨兵集群》,这里将Redis-Sentinel容器接入现有Docker Swarm overlay网络,规避Redis ClientApp访问不同网络的...注意事项 现有的应用程序处于Docker Swarm Overlay网络,默认是不允许附加其他容器,这里我们需要将该Overlay网络配置成可附加,方便Redis-Sentinel接入该网络,所有容器同网络...true // 将现有的overlay网络配置为:可附加容器 ........总结起来:将主机上现有单点Redis服务容器化,并搭建哨兵高可用集群, 且将Redis集群与应用程序放在同一Overlay网络,便于同网络段容器通信。

    67130

    网络经典命令行

    1.最基本,最常用的,测试物理网络的   ping 192.168.0.8 -t ,参数-t是等待用户去中断测试 2.查看DNS、IP、Mac等   A.Win98:winipcfg   ...202.99.160.68   Non-authoritative answer:   Name: pop.pcpop.com   Address: 202.99.160.212 3.网络信使...:   ARP -s 192.168.10.59 00 -50-ff-6c-08-75   解除网卡的IP与MAC地址的绑定:   arp -d 网卡IP 8.在网络邻居上隐藏你的计算机...计算机上安装的每一个以太网或令牌环网络适配器都有自己单独的表。如果在没有参数的情况下使用,则 arp 命令将显示帮助信息。   ...只有当网际协议 (TCP/IP) 协议在 网络连接中安装为网络适配器属性的组件时,该命令才可用。

    61210

    代码实践 | CVPR2020——AdderNet(加法网络)迁移到检测网络(代码分享)

    记得前段时间“计算机视觉研究院”推送了一篇关于CVPR2020最佳分类的文献(链接:CVPR2020最佳目标检测 | AdderNet(加法网络)含论文及源码链接),其中有同学问可以把这个新的分类框架嫁接到检测网络...前景回顾 估计已经有同学忘记加法网络的框架和精髓了,我们先简单回归一下具体的框架细节。...这样backbone就是一个模块,可以随意调用你想要的主干网络,而且还可以自己随意抽取对应的检测头,那接下来我们看看加法网络(AdderNet)的代码: ? ?...根据论文(链接:加法网络(AdderNet)链接)修改对应的卷积,然后本次应用在ResNet50网络中,那我们再把ResNet50中的Conv替换,我们继续看下去: ? ?...接下来就是简单的环节了,替换修改好的Backbone网络,然后在相应数据集中训练测试,观察之间的差别。

    83610

    经典网络(Yolo)再现,全内容跟踪

    关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 计算机视觉研究院专栏 作者:Edison_G 经典网络(Yolo) 今天接着上一篇的内容继续...也被上一篇“Faith”读者说对了,在此也感谢大家的关注与阅读,O(∩_∩)O谢谢 YOLO 看到这个封面,相信很多很多都阅读过,其实这是一篇“基于回归方法的深度学习目标检测算法”的经典之作,如果兴趣的您...相比于之前介绍的几个网络,明显高于之前说的几个简单目标检测网络。下面来一个YOLO V2的宣传片!有兴趣的您,可以自己去做一个模型玩一玩,其实过程很不错!...我自己来总结下YOLO: YOLO网络的结构和在之前得模型比较类似,主要是最后两层的结构,卷积层之后接了一个4096维的全连接层,然后后边又全连接到7*7*30维的张量上。...实际上这个7*7就是划分的网格数,现在要在每个网格上预测目标两个可能的位置及这个位置的目标置信度和类别,也就是每个网络预测两个目标,每个目标的信息有4维坐标信息(中心点坐标+长宽),1个目标的置信度,还有类别数

    67010

    卷积神经网络经典模型

    下图展示了一些经典模型的准确率和参数数量。 注:Gops表示处理器每秒进行的操作次数,1Gops表示处理机每秒进行 10^9 次操作。 2....关于前向传播、反向传播以及神经网络可以看:机器学习:神经网络(一) 机器学习:神经网络(二) 全连接层有很好的非线性表示能力,在卷积神经网络中一般用于最终的分类。...VGG网络经典的CNN结构开发到了极致,并达到了深度的极致。在VGG之后出现的各种网络都是在模型结构上进行了改变(如GoogLeNet的inception结构和ResNet的残差结构)。...得益于网络深度和大量的小卷积核,使得VGG的泛化能力非常好,可以很好地迁移到其他数据集上。具体来说就是用VGG提取数据的特征,然后在最后加入一个简单的分类器就行(如SVM)。...ResNet 8.1 ResNet网络介绍 我们知道要提升网络性能,除了更好的硬件和更大的数据集以外,最主要的办法就是增加网络的深度和宽度,而增加网络的深度和宽度带来最直接的问题就是网络参数剧增,使得模型容易过拟合以及难以训练

    4.3K20
    领券