03 掌握Python的基本语法 import模块导入方法 变量及基本数据类型 循环和条件基本控制语句 模块内嵌函数和自定义函数 .........编程之前,我是如何思考的: 1、首先,要读取文件名称,需要引入OS模块下的listdir函数 2、其次,遍历所有一级、二级、三级文件名称,需要用到for循环和循环嵌套 3、然后,读取文件下csv表,需要用到...import语句 声明变量 数据导入和导出 循环和嵌套循环 模块函数调用 自定义函数 Lambda表达式 Dataframe及操作 03 Python基本语法详解 01 import详解 下面程序使用导入整个模块的最简单语法来导入指定模块...如果你想要改变语句流的执行顺序,也就是说你想让程序做一些决定,根据不同的情况做不同的事情。这个时候,就需要通过控制流语句来实现。 在Python中有三种控制流语句——if、for和while。...创建一个DataFrame #根据字典创建一个DataFrame import pandas as pd data = { 'state':['Ohio','Ohio','Ohio','Nevada
导读 笔者早先学习Python以及数据分析相关知识时,对Pandas投入了很多精力,自认掌握的还算扎实,期间也总结分享了很多Pandas相关技巧和心得(点击上方“Pandas”标签可以查看系列文章)。...程序的基本结构大体包含三种,即顺序结构、分支结构和循环结构,其中循环结构应该是最能体现重复执行相同动作的代码控制语句,因此也是最必不可少的一种语法(当然,顺序和分支也都是必不可少的- -!)。...因此,为了在Pandas中更好的使用循环语句,本文重点介绍以下三个函数: iteritems iterrows itertuples 当然,这三个函数都是面向DataFrame这种数据结构的API,...我们知道,Pandas中的DataFrame有很多特性,比如可以将其视作是一种嵌套的字典结构:外层字典的key为各个列名(column),相应的value为对应各列,而各列实际上即为内层字典,其中内层字典的...04 小结 以上就是本文分享的Pandas中三个好用的函数,其使用方法大体相同,并均以迭代器的形式返回遍历结果,这对数据量较大时是尤为友好和内存高效的设计。
当然,这里的Spark是基于Scala语言版本,所以这3个工具实际分别代表了SQL、Python和Scala三种编程语言,而在不同语言中自然是不便于数据统一和交互的。...进入pyspark环境,已创建好sc和spark两个入口变量 两种pyspark环境搭建方式对比: 运行环境不同:pip源安装相当于扩展了python运行库,所以可在任何pythonIDE中引入和使用...,更为灵活方便;而spark tar包解压本质上相当于是安装了一个windows系统下的软件,只能通过执行该“软件”的方式进入 提供功能不同:pip源安装方式仅限于在python语言下使用,只要可以import...02 三大数据分析工具灵活切换 在日常工作中,我们常常会使用多种工具来实现不同的数据分析需求,比如个人用的最多的还是SQL、Pandas和Spark3大工具,无非就是喜欢SQL的语法简洁易用、Pandas...3)pd.DataFrame转换为spark.DataFrame ? 4)spark.DataFrame注册临时数据表并执行SQL查询语句 ?
在后台,它将操作一次性应用于数组或系列的所有元素(不同于一次操作一行的“for”循环)。 接下来我们使用一些用例来演示什么是矢量化。...在使用 Pandas DataFrame 时,这种差异将变得更加显著。 数学运算 在数据科学中,在使用 Pandas DataFrame 时,开发人员使用循环通过数学运算创建新的派生列。...我们创建一个具有 500 万行和 4 列的 pandas DataFrame,其中填充了 0 到 50 之间的随机值。...让我们看下面的例子来更好地理解它(我们将使用我们在用例 2 中创建的 DataFrame): 想象一下,我们要根据现有列“a”上的某些条件创建一个新列“e” ## 使用循环 import time start...if-else 语句的 python 循环相比,向量化操作所花费的时间快 600 倍。
数分小伙伴们都知道,SQL中的case when语句非常好用,尤其在加工变量的时候,可以按照指定的条件的进行赋值,并且结合其他嵌套用法还可以实现非常强大的功能。...一、环境 首先,pandas2.2.0的版本有个安装的前提条件,就是python的版本需要在3.9及以上才行,因此如果使用anaconda的朋友,可以通过conda install python=3.12.1...举例 下面创建一组数据说明,是不同学生的三科考试成绩。 案例1 我们想对所有的学生成绩的总分划分不同的等级。...: 判断条件:判断条件的布尔值数组不是基于输入series产生的,而是由series所在的dataframe中其他同维度的series加工获取。...比如,可以将以上全部变量加工过程通过链式的方式更优雅的实现,结合assign的使用一行代码可完成全部。
本文介绍的是如何创建DataFrame型数据,也是pandas中最常用的数据类型,必须掌握的,后续的所有连载文章几乎都是基于DataFrame数据的操作。...--MORE--> 扩展阅读 1、Pandas开篇之作:Pandas中使用爆炸函数 2、Pandas系列第一篇:Series类型数据创建 导入库 pandas和numpy建议通过anaconda安装后使用....jpg] 下面介绍的是通过不同的方式来创建DataFrame数据,所有方式最终使用的函数都是:pd.DataFrame() 创建空DataFrame 1、创建一个完全空的数据 创建一个空DataFrame...] python元组创建 元组创建的方式和列表比较类似:可以是单层元组,也可以进行嵌套。...它在pandas中是经常使用,本身就是多个Series类型数据的合并。 本文介绍了10种不同的方式创建DataFrame,最为常见的是通过读取文件的方式进行创建,然后对数据帧进行处理和分析。
Pandas 是基于 NumPy 的一个开源 Python 库,它被广泛用于快速分析数据,以及数据清洗和准备等工作。...事实上,Series 基本上就是基于 NumPy 的数组对象来的。和 NumPy 的数组不同,Series 能为数据自定义标签,也就是索引(index),然后通过索引来访问数组中的数据。 ?...和 NumPy 数组不同,Pandas 的 Series 能存放各种不同类型的对象。 从 Series 里获取数据 访问 Series 里的数据的方式,和 Python 字典基本一样: ?...从现有的列创建新列: ? 从 DataFrame 里删除行/列 想要删除某一行或一列,可以用 .drop() 函数。...Pandas 是基于 NumPy 的一个开源 Python 库,它被广泛用于快速分析数据,以及数据清洗和准备等工作。
解决AttributeError: 'DataFrame' object has no attribute 'tolist'当我们在处理数据分析或机器学习任务时,经常会使用Pandas库进行数据的处理和操作...因为DataFrame是Pandas库中的一个二维数据结构,它的数据类型和操作方法与列表不同,所以没有直接的.tolist()方法。 在下面的文章中,我们将讨论如何解决这个错误。...最后,我们使用一个循环遍历列表lst,并打印每个学生的信息。...在Pandas中,DataFrame是一个二维数据结构,可以类比为电子表格或数据库中的表格数据。它由一列或多列不同数据类型的数据组成,并且具有索引和列标签。 ....tolist()方法的主要作用是将DataFrame对象转换为一个嵌套的Python列表。它将每行数据作为一个列表,再将所有行的列表组合成一个大的列表。
而使用Python进行数据处理和分析时,pandas库和numpy库是常用的工具。其中,pandas库提供了DataFrame数据结构,numpy库提供了ndarray数据结构。...问题描述在pandas的DataFrame格式数据中,每一列可以是不同的数据类型,如数值型、字符串型、日期型等。而ndarray格式数据需要每个元素都是相同类型的,通常为数值型。...= series_a + 1上述代码中,我们创建了一个新的变量series_a,将列A转换为ndarray并使用pd.Series()将其转换为pandas的Series数据格式。...这使得ndarray在进行向量化操作时非常高效,比使用Python原生列表进行循环操作要快得多。...创建ndarray在numpy中,我们可以使用多种方式来创建ndarray对象:通过Python原生列表或元组创建:使用numpy.array()函数可以从一个Python原生列表或元组创建一个ndarray
导读 昨日推文PySpark环境搭建和简介,今天开始介绍PySpark中的第一个重要组件SQL/DataFrame,实际上从名字便可看出这是关系型数据库SQL和pandas.DataFrame的结合体,...注:由于Spark是基于scala语言实现,所以PySpark在变量和函数命名中也普遍采用驼峰命名法(首单词小写,后面单次首字母大写,例如someFunction),而非Python中的蛇形命名(各单词均小写...1)创建DataFrame的方式主要有两大类: 从其他数据类型转换,包括RDD、嵌套list、pd.DataFrame等,主要是通过spark.createDataFrame()接口创建 从文件、数据库中读取创建...,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出,在创建多列时首选...与此同时,DataFrame学习成本并不高,大致相当于关系型数据库SQL+pandas.DataFrame的结合体,很多接口和功能都可以触类旁通。
文章转载自公众号:数据管道 Abstract Pandas是一个开源的Python数据分析库,结合 NumPy 和 Matplotlib 类库,可以在内存中进行高性能的数据清洗、转换、分析及可视化工作...及列label,快速定位DataFrame的元素; iat,与at类似,不同的是根据position来定位的; ?...Pandas 中 inplace 参数在很多函数中都会有,它的作用是:是否在原对象基础上进行修改,默认为False,返回一个新的Dataframe;若为True,不创建新的对象,直接对原始对象进行修改。...现在看一下不同的连接类型的SQL和Pandas实现: INNER JOIN SQL: ? Pandas: ? LEFT OUTER JOIN SQL: ? Pandas: ?...Pandas: ? 总结: 本文从Pandas里面基本数据结构Dataframe的固定属性开始介绍,对比了做数据分析过程中的一些常用SQL语句的Pandas实现。
Python数据分析——Numpy、Pandas库 总第48篇 ▼ 利用Python进行数据分析中有两个重要的库是Numpy和Pandas,本章将围绕这两个库进行展开介绍。...Numpy基础 1、创建ndarray数组 使用array函数,它接受一切序列型的对象,包括其他数组,然后产生一个新的Numpy数组。 嵌套序列将会被转换成一个多维数组。...上述语句选出的是元素(1,0)、(5,3)、(7,1)、(2,2)。 上述语句按0、3、1、2列的顺序依次显示1、5、7、2行。下述语句能实现同样的效果。...2、DataFrame (1)概念: DataFrame是一个表格型的数据结构,含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...Pandas基本功能 1、重新索引 Pandas对象的一个方法就是重新索引(reindex),其作用是创建一个新的索引,pandas对象将按这个新索引进行排序。对于不存在的索引值,引入缺失值。
作者:Benedikt Droste 编译:1+1=6 前言 如果你使用Python和Pandas进行数据分析,循环是不可避免要使用的。...然而,即使对于较小的DataFrame来说,使用标准循环也是非常耗时的,对于较大的DataFrame来说,你懂的 。今天为大家分享一个关于Pandas提速的小攻略,助你一臂之力!...标准循环 Dataframe是Pandas对象,具有行和列。如果使用循环,你将遍历整个对象。Python不能利用任何内置函数,而且速度非常慢。...我们创建了一个包含65列和1140行的Dataframe。它包含了2016-2019赛季的足球比赛结果。我们希望创建一个新列,用于标注某个特定球队是否打了平局。...代码运行了0.305毫秒,比开始时使用的标准循环快了 71803倍! 总结 我们比较了五种不同的方法,并根据一些计算将一个新列添加到我们的DataFrame中。
Python使用得越熟练,越容易准备新数据集以进行分析。 最好在IPython和Jupyter中亲自尝试本书中使用的工具。...代码语句;第二条语句创建一个名为data的变量,它引用一个新创建的Python字典。...[38]: True In [39]: a is not c Out[39]: True 因为list总是创建一个新的Python列表(即复制),我们可以断定c是不同于a的。...pandas是基于NumPy数组构建的,特别是基于数组的函数和不使用for循环的数据处理。...重新索引 pandas对象的一个重要方法是reindex,其作用是创建一个新对象,它的数据符合新的索引。
本文将介绍一种简单的、可复用性高的基于pandas的方法,可以快速地将json数据转化为结构化数据,以供分析和建模使用。...安装完成之后,使用Sublime text打开要解析的json文件,然后按ctrl + command + J即可将json格式化,如下图所示: 格式化以后的json通过缩进来区分嵌套的层级,和python...这样,我们分析json的结构就方便了许多。 使用python解析json python的json库可以将json读取为字典格式。...对dict的第一层key进行循环 list2=[j[i] for j in df[col_name]] # 存储对应上述key的value至列表推导式 df[i]=list2 # 存储到新的列中 df.drop...如果有多个json待解析,而他们的结构又完全一致,那么可以使用os模块结合for循环进行批量处理,把结果合并到同一个DataFrame当中。
本文内容:Python 数据处理:Pandas库的使用 ---- Python 数据处理:Pandas库的使用 1.Pandas 数据结构 1.1 Series 1.2 DataFrame 2.基本功能...- Pandas 是基于 NumPy 数组构建的,特别是基于数组的函数和不使用 for 循环的数据处理。...另一种常见的数据形式是嵌套字典,如果嵌套字典传给DataFrame, Pandas 就会被解释为:外层字典的键作为列,内层键则作为行索引: import pandas as pd pop1 = {'...---- 2.基本功能 2.1 重新索引 Pandas对象的一个重要方法是reindex,其作用是创建一个新对象,它的数据符合新的索引。...通过标签选取行或列 get_value, set_value 通过行和列标签选取单一值 ---- 2.5 整数索引 处理整数索引的 Pandas 对象常常难住新手,因为它与 Python 内置的列表和元组的索引语法不同
在数据处理和分析中,JSON是一种常见的数据格式,而Pandas DataFrame是Python中广泛使用的数据结构。...使用 Pandas 从 JSON 字符串创建 DataFrame除了从JSON文件中读取数据,我们还可以使用Pandas的DataFrame()函数从JSON字符串创建DataFrame。...使用DataFrame()函数创建DataFrame:df = pd.DataFrame(data)在上述代码中,df是创建的Pandas DataFrame对象,其中包含从JSON字符串转换而来的数据...解析嵌套 JSON 数据在处理JSON数据时,我们经常会遇到嵌套的JSON结构。为了正确解析和展开嵌套的JSON数据,我们可以使用Pandas的json_normalize()函数。...我们介绍了使用Pandas的read_json()函数从JSON文件读取数据,以及使用DataFrame()函数从JSON字符串创建DataFrame。
pandas #Windows系统 python3 -m pip install --upgrade pandas #Linux系统 pandas 库使用 pandas 采用了大量的 NumPy...编码风格,但二者最大的不同是 pandas 是专门为处理表格和混杂数据设计的。...导入 pandas 模块,和常用的子模块 Series 和 DataFrame import pands as pd from pandas import Series,DataFrame 通过传递值列表来创建...另一种常见的数据形式是嵌套字典,如果嵌套字典传给 DataFrame,pandas 就会被解释为:外层字典的键作为列,内层键则作为行索引,代码示例: #DataFrame另一种常见的数据形式是嵌套字典...DataFrame 作为 pandas 库的基本结构的一些特性,如何创建 pandas 对象、指定 columns 和 index 创建 Series 和 DataFrame 对象、赋值操作、属性获取、
字典(dict) Python内置了字典dict,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度,其格式是用大括号{}括起来key和value用冒号“:”进行对应。...循环结构 这里介绍Python中的for循环结构和while循环结构,循环语句用于遍历枚举一个可迭代对象的所有取值或其元素,每一个被遍历到的取值或元素执行指定的程序并输出。...Python的函数 函数是用来封装特定功能的实体,可对不同类型和结构的数据进行操作,达到预定目标。像之前的数据类型转换函数入str,float等就属于函数。...Pandas是一个基于Numpy开发的更高级的结构化数据分析工具,提供了Series、DataFrame、Panel等数据结构,可以很方便地对序列、截面数据(二维表)、面板数据进行处理。...、元组、字典等数据结构创建DataFrame, 1.2 读取指定行和指定列 使用参数usecol和nrows读取指定的列和前n行,这样可以加快数据读取速度。
乾明 编译整理 量子位 报道 | 公众号 QbitAI 用Python和Pandas进行数据分析,很快就会用到循环。 但在这其中,就算是较小的DataFrame,使用标准循环也比较耗时。...我们一起来看看~ 标准循环处理3年足球赛数据:20.7秒 DataFrame是具有行和列的Pandas对象。如果使用循环,需要遍历整个对象。 Python不能利用任何内置函数,而且速度很慢。...需要解决的问题是:创建一个新的列,用于指示某个特定的队是否打了平局。...= 'D')), 'Draws'] = 'No_Draw' 现在,可以用 Pandas 列作为输入创建新列: ? 在这种情况下,甚至不需要循环。所要做的就是调整函数的内容。...他说,如果你使用Python、Pandas和Numpy进行数据分析,总会有改进代码的空间。 在对上述五种方法进行比较之后,哪个更快一目了然: ?
领取专属 10元无门槛券
手把手带您无忧上云