做数据分析的Matlab用户最常见的问题之一是如何在日期轴上绘制数据。很多时候,分析师最初会使用Excel处理数据,然后用相应的工具去处理数据,分析数据。...Excel有一种在日期轴上绘制数据的简单方法,但在Matlab中使用日期轴需要麻烦一点。...但matlab针对这种特殊情况也有对应的一些函数,使用Matlab完成这项任务并不难,而且和大多数Matlab函数一样,它具有相当大的通用性。...使用datenum,用户可以用字符串或多个参数指定日期和时间。要从datenum中检索日期和时间,用户可以使用datevec。Matlab将datenum的输出用于绘图上的x轴数据。...例如,假设用户希望以6个月的间隔绘制3年的数据。首先要创建要绘制的日期、月份和年份的矢量。之后,将这些矢量转换为日期数字,并根据数据绘制日期数字。
1、点击[命令行窗口] 2、按<Enter>键 3、点击[命令行窗口] 4、按<Enter>键
这个R tutorial描述如何使用ggplot2包修改x和y轴刻度。同样,该文包含如何执行轴转换(对数化,开方等)和日期转换。...改变x和y轴刻度 下面是一些设置刻度的函数: xlim() 和 ylim() expand_limits() scale_x_continuous() 和scale_y_continuous() 使用xlim...()和ylim()函数 想要改变连续轴的范围,可以使用xlim()和ylim()函数: # x axis limits sp + xlim(min, max) # y axis limits sp +...使用expand_limts()函数 注意,函数 expand_limits() 可以用于: 快速设置在x和y轴在 (0,0) 处的截距项 改变x和y轴范围 # set the intercept of...使用scale_xx()函数 也可以使用函数 scale_x_continuous() 和 scale_y_continuous() 分别改变x和y轴的刻度范围。
继续对Echarts的属性进行探索,关于如何修改Echarts的x和y轴坐标颜色的问题,继续看,主要修改代码的地方: /*改变xy轴颜色*/ axisLine:...type: 'category', boundaryGap: false, /*改变x轴颜色...yAxis: { splitLine: { show: false }, /*改变y轴颜色..."3", "4", "5"] }] }); 如图所示,已经将xy轴的颜色改变成为红色
经常有读者咨询fig文件里面的x和y轴的数据如何提取,故分享总结一下这个基础方法,在一些场景下面,对方不会把源代码提供,只会提供一个figure来做交互和结果查看,这时候如果想重新绘制figure增加内容...,就需要提取figure图的数据, 1、保存一个figure文件 clear clc close all x = 0:0.1:10; y = sin(x); figure plot(x,y) saveas...这个时候数据就在xdata和ydata,可以进行二次绘图。...3、针对特殊情况的处理 3.1 subplot的figure x = 0:0.1:10; y = sin(x); y2 = cos(x) figure subplot(211) plot(x,y) subplot...= 0:0.1:10; y = sin(x); y2 = cos(x) figure plot3(x,y,y2) saveas(gcf,'xyy2.fig');
轴 和 y 轴数据 , 调用 Bar#add_xaxis() 函数 , 设置 x 轴数据 , 实际数据放在 列表 中 , 作为参数传递给该函数 ; 调用 Bar#add_yaxis() 函数 , 设置...y 轴数据 , 第一个参数是柱状图标题 , 第二个参数 是 列表类型的容器变量 , 表示 y 轴的数据 ; # 设置 x 轴数据 bar.add_xaxis(["河北", "河南", "山东", "山西...轴 / y 轴 翻转 调用 Bar#reversal_axis() 函数 , 可以翻转 柱状图 的 x 轴 和 y 轴 ; 代码示例 : """ pyecharts 模块 """ # 导入 pyecharts...上面的柱状图的 数值标签 都在柱子 的中心位置显示 , 这是默认显示位置 ; 如果我们想要让 数值数据 显示在最右侧 , 在添加 y 轴数据时 , 为其设置一个 LabelOpts 参数 ; # 设置...], label_opts=LabelOpts(position="right")) # 翻转 x 轴 / y 轴 bar.reversal_axis() # 生成柱状图
2024-02-28:用go语言,有一个由x轴和y轴组成的坐标系, "y下"和"y上"表示一条无限延伸的道路,"y下"表示这个道路的下限,"y上"表示这个道路的上限, 给定一批长方形,每一个长方形有(x1..., x2, y1, y2),4个坐标可以表示一个长方形, 判断这条道路整体是不是可以走通的。...给你两个整数 x 和 y 表示某一个黑色像素的位置。 请你找出包含全部黑色像素的最小矩形(与坐标轴对齐),并返回该矩形的面积。 你必须设计并实现一个时间复杂度低于 O(m*n) 的算法来解决此问题。...8.在main函数中,定义一个示例图片image和给定的点(x, y),调用minArea函数并将结果打印出来。...= 0 y = 2 result = minArea(image, x, y) print(result)
Python大数据分析 一、seaborn简介 seaborn是Python中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到...,双变量作为第2个输入变量 shade:bool型变量,用于控制是否对核密度估计曲线下的面积进行色彩填充,True代表填充 vertical:bool型变量,在单变量输入时有效,用于控制是否颠倒x-y轴位置...,默认为0.05 axis:字符型变量,观测值对应小短条所在的轴,默认为'x',即x轴 使用默认参数进行绘制: ax = sns.rugplot(iris.petal_length) 调换所处的坐标轴...y轴显示范围 joint_kws,marginal_kws,annot_kws:传入参数字典来分别精细化控制每个组件 在默认参数设置下绘制成对变量联合图: ax = sns.jointplot(x='sepal_length...'sepal_width',data=setosa, kind='hex') 修改kind为'kde'来将直方图和散点图转换为核密度估计图,并将边际轴的留白大小设定为
一、简介 seaborn是Python中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到seaborn中内置的若干函数对数据的分布进行多种多样的可视化...交换x-y轴位置: ax = sns.kdeplot(iris.petal_width, shade=True, color='r',...,其主要参数如下: a:一维数组,传入观测值向量 height:设置每个观测点对应的小短条的高度,默认为0.05 axis:字符型变量,观测值对应小短条所在的轴,默认为'x',即x轴 使用默认参数进行绘制...三、distplot seaborn中的distplot主要功能是绘制单变量的直方图,且还可以在直方图的基础上施加kdeplot和rugplot的部分内容,是一个功能非常强大且实用的函数,其主要参数如下...修改kind为'kde'来将直方图和散点图转换为核密度估计图,并将边际轴的留白大小设定为0: ax = sns.jointplot(x='sepal_length',y='sepal_width',data
文章目录 1. matplotlib绘制基本图形 1.1. 折线图 1.2. 饼状图 1.3. 散点图 1.4. 直方图 1.5....0-10之间以1为间隔的numpy数组 y=x+10 plt.plot(x,y,color='red',linestyle='--',marker='>',linewidth=3,label='example...labels=activities, colors=cols, #指定每一个区块的颜色 startangle=90, #开始角度,默认是0度,从x轴开始...,90度从y轴开始 shadow= True, #阴影效果 explode=(0,0.1,0,0), #拉出第二个切片,如果全为0就不拉出,这里的数字是相对与圆心的距离...np.random.rand(1000) y=np.random.rand(len(x)) plt.scatter(x,y,color='r',alpha=0.3,label='example one'
直方图在横坐标的数据值范围内均等分的形成一定数量的数据段(bins),并在每个数据段内用矩形条(bars)显示y轴观察数量的方式,完成了对的数据分布的可视化展示。...当绘制直方图时,你最需要确定的参数是矩形条的数目以及如何放置它们。...就像直方图那样,KDE plots 会在一个轴上通过高度沿着其它轴将观察的密度编码。 sns.distplot(x, hist=False, rug=True); ?..., "y"]) Scatterplots 双变量分布最熟悉的可视化方法无疑是散点图了,在散点图中每个观察结果以x轴和y轴值所对应的点展示。...sns.jointplot(x="x", y="y", data=df, kind="kde"); ? 你也可以用 kdeplot 函数来绘制一个二维的核密度图形。
数据经过NumPy和Pandas的计算,最终得到了我们想要的数据结论,但是这些数据结论并不直观,所以想要把数据分析的结论做到可视化,让任何其他人看起来毫无压力,那么Matplotlib将派上用场。...通过 Matplotlib,我们可以仅需要写几行代码,就可以生成绘图,直方图,功率谱,条形图,错误图,散点图等,方便数据展示。...) #设置y轴标签 plt.ylabel("y轴") #绘制折线图 plt.plot(x, y) #将折线图显示 plt.show() 代码运行结果会生成y=2x的坐标图,如图所示。...绘制折线图方法plt.plot(x,y,format_string,**kwargs) x:x轴数据,列表或数组,可选 y:y轴数据,列表或数组 format_string:控制曲线的格式字符串,可选,..."y轴") plt.scatter(x, y, color='r', marker='*') plt.show() 代码运行结果会生成x轴和y轴指定点的坐标图,如图所示。
并且在图中添加了一个垂直于第一个主成分轴的直方图,以显示主成份轴上的分布。这个图可能看起来很简单(散点图和有方向的直方图),其实不然,绘制这样的图也比较困难。...主要的困难是要使直方图处于正确的位置、大小和方向,位置必须在数据坐标中设置,大小必须在图形标准化坐标中给出,方向必须在角度中给出。更复杂的是,我们想要用数据点来表示直方图上方柱子及文本的高度。...y) ** 2) 直方图轴的准备 创建副轴,它必须是方轴: xmax-xmin = ymax-ymin。...ax2.set_position((x - w1 / 2, y - h1 / 2, w1, h1)) # 添加柱状图轴 fig.add_subplot(ax2) 装饰轴线 只显示底部轴,并且设置底部轴标签不可见...xmin) * X0 Y = np.array(counts) # 这个辅助轴对于画东西是必要的(不知道为什么) ax2_aux = ax2.get_aux_axes(transform) # 绘制直方图
绘制第一个简单的图表我们先从一个非常简单的折线图开始:import matplotlib.pyplot as plt# 数据:x轴和y轴x = [1, 2, 3, 4, 5]y = [1, 4, 9,...Axis")# 显示图表plt.show()代码解读:plt.plot(x, y):使用 plot() 函数绘制折线图,x 和 y 是数据点的坐标。...plt.xlabel() 和 plt.ylabel():为 x 轴和 y 轴添加标签。plt.show():显示图表。...这段代码将会生成一个简单的线性关系的图表,x 轴是 1 到 5,y 轴是它们对应的平方值。4. 绘制散点图如果你想展示数据点之间的关系而不是使用折线,可以绘制散点图。...绘制直方图 (Histogram)直方图可以帮助你可视化数据的分布。例如,以下示例展示了生成的随机数据的分布。
从上面的输出我们可以看到,绘制图表大致的语法是df.iplot(kind=图表名称)而如何我们想要查看某个特定图表绘制时候的参数,例如柱状图bar参数有哪些,可以这么做 cf.help('bar') 柱状图...df2.iplot(kind='bar',x='Category',y='Values', xTitle = "Category",yTitle = "Values", ...title = "直方图") output 其中的x参数上面填的是x轴上面对应的变量名,而y参数填的是y轴上面对应的变量名,我们可以将绘制的图表以png的格式下载下来, 同时我们也还可以对绘制的图表放大查看...)、box(箱型图)、heatmap(热力图)等等 theme: 布局主题,可以通过cf.getThemes()来查看主要有哪些 title: 图表的标题 xTitle/yTitle: x或者y轴上面的轴名...和lines+text等模式 size: 针对于散点图而言,主要用来调整散点的大小 shape: 在绘制子图时候各个图的布局 bargap: 直方图当中柱子之间的距离 barmode : 直方图的形态,
昨天文章发出去才发现少了部分代码遗漏了,今天补上 经常有读者咨询fig文件里面的x和y轴的数据如何提取,故分享总结一下这个基础方法,在一些场景下面,对方不会把源代码提供,只会提供一个figure来做交互和结果查看...,这时候如果想重新绘制figure增加内容,就需要提取figure图的数据, 1、保存一个figure文件 clear clc close all x = 0:0.1:10; y = sin(x);...这个时候数据就在xdata和ydata,可以进行二次绘图。...3、针对特殊情况的处理 3.1 subplot的figure x = 0:0.1:10; y = sin(x); y2 = cos(x) figure subplot(211) plot(x,y) subplot...= 0:0.1:10; y = sin(x); y2 = cos(x) figure plot3(x,y,y2) saveas(gcf,'xyy2.fig'); open("xyy2.fig") %
xlabel: 图形中会显示x轴的标签,可以使用xlabel参数修改或设置不显示,ylabel同理。...绘制散点图时,通过x参数和y参数指定散点图的x轴数据和y轴数据。x和y都是DataFrame中的列标签,绘图时会根据列标签读取对应列的数据。 s: 使用s参数设置散点图中点的大小。...此时x轴的刻度值会被自动隐藏,将colorbar参数设置成False,可以隐藏颜色渐变图,重新显示x轴刻度值。...设置bottom参数后,柱状图会沿y轴方向上移,如设置为200,则柱状图上移200,从y坐标为200的地方开始绘制,柱状图的长度不发生改变。例子中的0.5相对于2000多的数值差距太大,看不出来。...当然,在设置x轴刻度值,y轴刻度值,数值标签等时要注意方向的转换。 六、绘制直方图 使用plot链式调用hist()方法,或在plot()中设置kind为hist,都可以绘制直方图。
()中的x和y关键字绘制一列与另一列的对比,比如我们想要使用星期六的客流量和星期日的客流量作对比: df_flow_7=df_flow[df_flow['日期']=='星期日'].iloc[:7,:]...df.plot.area(stacked=False) 五、散点图 可以使用DataFrame.plot.scatter()方法绘制散点图,散点图需要x轴和y轴的数字列。...这些可以由x和y关键字指定。...df_flow_mark=df_flow_mark.reset_index() df_flow_mark.plot.scatter(x='日期',y='客流量') df_flow_mark 要在单个轴上绘制多个列组...df.plot.hexbin(x="a", y="b", gridsize=10) 默认情况下,计算每个(x,y)点周围计数的直方图。
但是有时候,我们需要自己指定 x 轴和 y 轴,这可如何是好呢? 别怕,Pandas 非常方便的为我们提供了参数 x 和 y。...同样我们也可以自己指定 x 轴和 y 轴。 df.plot(kind="bar", x="A", y=["B", "C"]) x1c573f13630> ? 直方图 直方图是一种展示数据频数/率的特殊的柱状图。如果想要画出直方图,可以将参数 kind 设置为 hist。..._subplots.AxesSubplot at 0x1c574186cf8> ? 散点图 如果想要画出散点图,可以将参数 kind 设置为 scatter,同时需要指定 x 和 y。..._subplots.AxesSubplot at 0x1c57422fe10> ? 如果想要在单个轴上绘制多个列组,需要指定 ax。
如果想要做散点图,可以直接使用sns.jointplot(x, y, data=None, kind='scatter')函数。其中x、y是data中的下标。...在Matplotlib中,我们可以直接使用plt.plot()函数,当然需要提前把数据按照X轴的大小进行排序,要不画出来的折线图就无法按照X轴递增的顺序展示。...这里我们设置了x、y的数组。x数组代表时间(年),y数组我们随便设置几个取值。下面是详细的代码。 ? 然后我们分别用Matplotlib和Seaborn进行画图,可以得到下面的图示。...你可以看出这两个图示的结果是完全一样的,只是在seaborn中标记了x和y轴的含义。 ? ?...这是一段绘制直方图的代码。 ?
领取专属 10元无门槛券
手把手带您无忧上云