首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

matlab中直方图的定义_matlab绘制直方图

说明:对于格式(1) ,显示图像I 的直方图,n 为灰度级 数目,灰度图像的缺省值为256 ,黑白图像缺省值为2 ;对于 格式(2) ,J 返回调色板为map 的图像I 的直方图;对格式(3) ,返回图像...I 的每个灰度上的像素点数目;格式(4) 对图 像I 均衡化处理,n 表示灰度级数目,缺省值为64 ;格式(5) 对调色板为map 的灰度图像均衡化处理,返回有n 级灰度 的图像;格式(6) 对图像I...均衡化处理后同时返回各灰度 值。...( I ,256) ; %显示原始图像直方图, 灰度级为256 tit le(′原始图像直方图′) ; %直方图均衡化处理 J = histeq( I ,32) ; %均衡化处理为灰度级为32 的直方图...本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

72020
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    技术|直方图的绘制——Excel篇

    【Excel函数=randbetween(0,100)】: [9zyjyg99ir.png] Excel绘制 接下来看Excel中如何进行绘制。...[0j9bf24ivx.png] 如果点开确定我们可以看到,直方图的绘制需要我们给两组数据——输入区域和接收区域。...: [hmvb06y3u1.png] 总结 使用Excel进行直方图的绘制总体来说操作比较简单,但是实际操作起来的时候我们可能会遇到这么一个问题:在数据量特别大的时候,我们绘制之前并不知道应该如何分组!...对此,建议大家在进行直方图绘制之前先务必先做一个描述性统计,看看数据的取值范围和基本的分布形态,才好确定绘制直方图的分组组数和组距。...[2sekdjwt5s.png] 对于直方图绘制的问题,Python和R的绘制就要更加容易一些了,具体的操作我们下次再讲。

    2.4K40

    技术|直方图的绘制——R语言&Python篇

    昨天我们介绍了使用Excel进行直方图的绘制,今天我们来介绍R语言和Python下的绘制方法。 ?...R语言篇 首先我们来介绍R语言下的直方图绘制,因为R语言是专门用于的统计分析软件,所以在不调用任何包的情况下就可以进行直方图的绘制。...为了便于理解(对初学者来说好看不好看的问题可以缓一缓再说),本次教程中的直方图绘制就采用不加载包的形式进行绘制,数据还是采用和昨天一样的实例数据。完整的绘制代码如下: ? ?...相对于R来说,我们在Python中进行直方图的绘制要略复杂一点,需要调用matplotlib这个第三方库进行绘制。...总结 R&Python VS Excel 结合昨天的内容,大家已经发现了,在R和Python中,绘制直方图的时候,我们并不需知道数据的取值范围情况,软件会帮我们自动分好组。

    1.4K40

    Python中gdal实现多幅栅格影像批量绘制直方图

    现需要对多幅栅格数据文件进行直方图绘制,具体绘制内容即各栅格图像像素数值的分布情况;所有栅格数据都保存在同一目标路径下,且均为.tif格式;而目标路径下具有其它非.tif格式的文件,以及不需要进行直方图绘制的....tif格式文件,因此需要在绘制前对目标路径下的文件列表加以筛选,只保留需要绘制直方图的栅格文件。   ...首先,借助os.listdir()函数获取lai_file_path路径下的全部文件,此时获取的文件包括需要的.tif格式文件与其它不需要的文件;其次,通过os.path.splitext()函数将上述列表中的每一个文件...在这里,由于不需要绘图的.tif文件均以MCD开头,因此直接通过字符串截取的方式将其加以剔除即可;大家在上述代码的实际运用过程中按照个人需求进行筛选即可。   接下来,开始直方图的绘制。...在这里我选择了将几幅直方图以子图的形式绘制在一个总图中,因此需要借助sub_plot_num进行循环;随后,对筛选后的图层进行读取,并将栅格数据转换为Array形式,这一部分具体可以参考这篇文章(https

    28730

    python中opencv直方图处理,并且设置参数criteria的值分享

    Python控制线程和函数超时处理cd_ym = {"1":"gly()", # 管理员登录3 83edge (package)当我们尝试在终端中运行它时,我们会遇到错误:'int' object is...datefmt='%Y-%m-%d %H:%M:%S %p', ) break语法:rename(old_path, new_path)# 设置参数criteria的值...append() 函数可以向列表末尾添加「任意类型」的元素python中opencv直方图处理 hmac 加盐加密模块ran_str = ''.join(random.sample(string.ascii_letters...#将公司名和统计结果赋值给新的变量 如果你把fixture函数放到conftest.py文件中,那么在这个文件所在的整个目录下,都可以直接请求里面的fixture,不需要导入。...,无论校验的内容有多大,得到的hash值长度是固定的,可以用于对文本的哈希处理(venv) E:\Codes\python_everything\begining-python\src\08>list8

    92020

    OEEL图表——进行直方图绘制histogram函数的使用

    直方图是一种用于可视化数据分布的图表。它可以帮助我们理解数据的集中程度、偏移程度和分散程度。以下是直方图的一些主要作用: 1....展示数据分布:直方图可以将数据按照不同区间进行分组,并以柱状图的形式呈现。通过观察直方图的形状和高低,我们可以了解数据在不同区间内的分布情况。 2. 检测异常值:直方图可以帮助我们发现数据中的异常值。...异常值往往会导致直方图在某一区间内出现明显的峰值或者缺口。通过观察直方图,我们可以发现这些异常值并进行进一步的分析。 3. 判断数据分布的偏度和峰度:直方图的形状可以反映数据的偏度和峰度。...偏度指的是数据分布的对称性,而峰度指的是数据分布的尖锐程度。通过观察直方图的形状,我们可以初步判断数据的偏度和峰度。 4. 比较数据分布:直方图可以用来比较不同数据集的分布情况。...通过将多个直方图进行重叠或并列显示,我们可以直观地比较数据集之间的差异和相似性。 总的来说,直方图是一种简单而有效的数据分析工具,可以帮助我们了解和解释数据的分布特征。

    7100

    GEE 案例——如何计算sentinel-2中每一个单景影像的波段的DN值并绘制直方图

    原始问题 我正试图在 Google 地球引擎中为整个图像集合计算一个直方图。为了达到我想要的结果,我现在所做的是计算每个单独图像的直方图直方图1 并将它们相加,不知道是否正确。...简介 直方图基本上是一个配对值列表。因此,您可以用函数映射它,而无需 for/ 循环。以下代码片段包含了为整个图像集生成直方图的算法的重要部分。...创建一个聚类器,使用固定数量、固定宽度的分隔来计算输入的直方图。超出 [min, max] 范围的值将被忽略。输出是一个 Nx2 数组,包含桶下边缘和计数(或累计计数),适合按像素使用。...计算并绘制图像指定区域内色带值的直方图。 X 轴 直方图桶(带值)。 Y 轴 频率(带值在桶中的像素数量)。 Returns a chart....ui.Chart.image.histogram 获得的(您的 histo 图像对于获得整个集合的直方图没有用处,也无法添加到地图画布中)。

    17110

    如何对矩阵中的所有值进行比较?

    如何对矩阵中的所有值进行比较? (一) 分析需求 需求相对比较明确,就是在矩阵中显示的值,需要进行整体比较,而不是单个字段值直接进行的比较。如图1所示,确认矩阵中最大值或者最小值。 ?...只需要在计算比较值的时候对维度进行忽略即可。如果所有字段在单一的表格中,那相对比较好办,只需要在计算金额的时候忽略表中的维度即可。 ? 如果维度在不同表中,那建议构建一个有维度组成的表并进行计算。...通过这个值的大小设置条件格式,就能在矩阵中显示最大值和最小值的标记了。...当然这里还会有一个问题,和之前的文章中类似,如果同时具备这两个维度的外部筛选条件,那这样做的话也会出错,如图3所示,因为筛选后把最大值或者最小值给筛选掉了,因为我们要显示的是矩阵中的值进行比较,如果通过外部筛选后...,矩阵中的值会变化,所以这时使用AllSelect会更合适。

    7.7K20

    Python中gdal读取多波段HDF栅格影像并绘制直方图

    本文详细介绍基于Python语言gdal等模块实现多波段HDF栅格图像文件(即.hdf文件)的读取、处理与像元值可视化等操作。...此外,基于gdal等模块读取.tif格式栅格图层文件的方法可以查看Python中gdal实现多幅栅格影像批量绘制直方图,读取单波段.hdf格式栅格图层文件的方法可以查看Python中gdal栅格影像读取计算与写入及质量评估...本文期望实现的需求为:现有一存放.tif格式的全球LAI产品栅格数据的路径,需将这一路径下的全部LAI产品栅格数据依据另一路径下存放的全球MODIS植被覆盖类型产品栅格数据进行像元分类,并绘制全球每一种植被类型对应的...LAI数值直方图。...mcd_sub_dataset的Index)是从0开始计算的;而后面的[0]则表示元组中的第一个参数,也就是上面一幅图中显示的该波段对应的数据路径。

    1.2K20

    python dataframe筛选列表的值转为list【常用】

    筛选列表中,当b列中为’1’时,所有c的值,然后转为list 2 .筛选列表中,当a列中为'one',b列为'1'时,所有c的值,然后转为list 3 .将a列整列的值,转为list(两种) 4....筛选列表,当a=‘one’时,取整行所有值,然后转为list 具体看下面代码: import pandas as pd from pandas import DataFrame df = DataFrame...当b列中为’1’时,所有c的值,然后转为list b_c = df.c[df['b'] == '1'].tolist() print(b_c) # out: ['一', '一', '四'] # 筛选列表中...,当a列中为'one',b列为'1'时,所有c的值,然后转为list a_b_c = df.c[(df['a'] == 'one') & (df['b'] == '1')].tolist() print...'three', 'four', 'five'] ['one', 'one', 'two', 'three', 'four', 'five'] """ # 筛选列表,当a=‘one’时,取整行所有值

    5.1K10

    opencv(4.5.3)-python(二十三)--直方图的寻找、绘制、分析

    BINS :上面的直方图显示了每个像素值的像素数,即从0到255,即你需要256个值来显示上述直方图。但请考虑,如果你不需要单独找到所有像素值的像素数,而是需要找到像素值的一个区间的像素数,怎么办?...所以你要做的就是简单地把整个直方图分成16个子部分,每个子部分的值是其中所有像素数的总和。这个子部分被称为 "BIN"。...在这种情况下,我们只收集一种数据,即灰度值。所以这里是1。 RANGE : 它是你想测量的灰度值的范围。通常情况下,它是[0,256],即所有灰度值。 1....• channels : 它也是在方括号中给出的。它是我们计算直方图的通道的索引。例如,如果输入的是灰度图像,它的值是[0]。...使用OpenCV 我们可以将直方图的值和它的bin值调整成x,y坐标的样子,这样你就可以用cv.line()或cv.polyline()函数来绘制它,生成与上面相同的图像。

    79620

    利用Excel绘制超好看的直方图与正态分布曲线

    今天给大家如何利用Excel绘制直方图与正态分布曲线,还是先上几幅不同配色的图来看一下: 作图思路 先对原始的数据进行分割(组),计算每个分组的频数与正态分布后。...然后插入柱形图与折线图,调整柱形的分类间距与折线的平滑度即可。 原始数据 原始数据源如下图所示: 操作步骤 Step-01 对原数据进行分组,计算频数与正态分布。...选择E3:E17单元格,在公式编辑栏中输入以下公式,按组合键完成公式填充。...=FREQUENCY(A:A,D3:D17) 同样地在D3单元格中输入以下公式,按Enter键后向下填充至D17单元格。...如下图所示: Step-07 最后对图表进行美化即可绘制出精美的直方图与正态分布曲线。

    12.5K20

    Python中的DataFrame模块学

    初始化DataFrame   创建一个空的DataFrame变量   import pandas as pd   import numpy as np   data = pd.DataFrame()   ...()   data['ID'] = range(0,10)   print(np.shape(data)) # (10,1)   DataFrame增加一列数据,且值相同   import pandas...重新调整index的值   import pandas as pd   data = pd.DataFrame()   data['ID'] = range(0,3)   # data =   # ID...异常处理   过滤所有包含NaN的行   dropna()函数的参数配置参考官网pandas.DataFrame.dropna   from numpy import nan as NaN   import...'表示去除行 1 or 'columns'表示去除列   # how: 'any'表示行或列只要含有NaN就去除,'all'表示行或列全都含有NaN才去除   # thresh: 整数n,表示每行或列中至少有

    2.5K10

    (六)Python:Pandas中的DataFrame

    目录 基本特征 创建 自动生成行索引 自定义生成行索引 使用 索引与值 基本操作 统计功能  ---- 基本特征 一个表格型的数据结构 含有一组有序的列(类似于index) 大致可看成共享同一个index...                我们可以通过一些基本方法来查看DataFrame的行索引、列索引和值,代码如下所示: import pandas as pd import numpy as np data...print(frame.iloc[0:2, 0]) # 第零行和第一行的第零列(第一个0可省略) print(frame.iloc[0:2]) # 少了第二个参数,就会输出所有列 print...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大的统计功能,它有大量的函数可以使用

    3.8K20

    5种方法教你用Python玩转histogram直方图

    本篇博主将要总结一下使用Python绘制直方图的所有方法,大致可分为三大类(详细划分是五类,参照文末总结): 纯Python实现直方图,不使用任何第三方库 使用Numpy来创建直方图总结数据 使用matplotlib...纯Python实现histogram 当准备用纯Python来绘制直方图的时候,最简单的想法就是将每个值出现的次数以报告形式展示。...,而值为所有数值出现的频率次数。...pandas.DataFrame.histogram() 的用法与Series是一样的,但生成的是对DataFrame数据中的每一列的直方图。...现在,我们可以在同一个Matplotlib轴上绘制每个直方图以及对应的kde,使用pandas的plot.kde()的好处就是:它会自动的将所有列的直方图和kde都显示出来,用起来非常方便,具体代码如下

    4.3K10
    领券