首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

CNN中各层图像大小的计算

CNN刚刚入门,一直不是很明白通过卷积或者pooling之后图像的大小是多少,看了几天之后终于搞清楚了,在这里就结合keras来说说各层图像大小是怎么计算的,给刚入门的一点启发吧!...(2,2),输入大小是30*14,stride默认是None,输出大小是15*7 chars_model.add(MaxPooling2D(pool_size=(2, 2))) # dropout防止过拟合...='valid', activation='relu', W_regularizer=l2(weight_decay))) # maxpooling,大小(2,2),输入大小是12*4,stride默认是...(0.3)) # flatten chars_model.add(Flatten()) # 全连接,输入是上层的64个feature map,大小是5*1,输出有512个 chars_model.add...nb_epoch=4000, verbose=1, show_accuracy=True, validation_split=0.1, callbacks=[check_pointer]) # 使用训练好的模型来评价

2.5K80

如何用自己的数据训练MASK R-CNN模型

使用你的数据 我们将以形状数据集作为范例,其中颜色和大小随机的圆形、正方形和三角形分布在颜色随机的背景上。我们之前已经创建了一个COCO类型的数据集。...神经网络是连接到一起的神经元的容器,每个神经元根据其输入和内部参数输出信号。当我们训练神经网络时,我们调整神经元的内部参数,以便得到符合期望的输出。 ?...我们不用花费数天或数周的时间来训练模型,也没有成千上万的例子,但我们还能得到相当好的结果,是因为我们从真正的COCO数据集之前的训练中复制了权重(内部神经元参数)。...由于大多数图像数据集都有相似的基本特征,比如颜色和模式,所以训练一个模型得出的数据通常可以用来训练另一个模型。以这种方式复制数据的方法叫做迁移学习。...现在尝试一下用自己的数据来训练Mask R-CNN模型吧。

1.2K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    精华文稿|在非理想输入下NeRF的重建

    给定几张不同视角下的图片,我们就能重建出一个非常精细的NeRF。然而在实际应用中,我们经常会遇到不同种输入图像的退化,比如镜头畸变、噪声和模糊。...本次分享中,我们会梳理已有的一些在非理想输入状况下的NeRF重建的相关工作,然后介绍我们的工作:Deblur-NeRF,即如何在输入图像有运动模糊或者失焦时依然能够重建一个清晰的NeRF。...首先,每张图片的曝光相同。其次这个图片需要比较清晰并且没有噪声也没有模糊,以及它的输入图片一般来说需要比较大于15张,同时需要在同一个尺度上,以及它需要正确的相机标定数据。...所以通过depth map的这个监督,也使得能在少量的输入图片下获得一个比较好的重建。 一种非理想状态也说我们很难知道标定的相机位置不准确。...但是这里大致给大家讲一下单张图的去模糊,一般是通过一些深度神经网络在一些大的数据集上训练,从而去学习一些数据的分布,从而使得对只有单张模糊的图像去恢复shape的一个过程。

    2K20

    用于训练具有跨数据集弱监督的语义分段CNN的数据选择

    作者:Panagiotis Meletis,Rob Romijnders,Gijs Dubbelman 摘要:训练用于具有强(每像素)和弱(每边界框)监督的语义分割的卷积网络需要大量弱标记数据。...我们提出了两种在弱监督下选择最相关数据的方法。 第一种方法设计用于在不需要标签的情况下找到视觉上相似的图像,并且基于使用高斯混合模型(GMM)建模图像表示。...作为GMM建模的副产品,我们提供了有关表征数据生成分布的有用见解。 第二种方法旨在寻找具有高对象多样性的图像,并且仅需要边界框标签。...这两种方法都是在自动驾驶的背景下开发的,并且在Cityscapes和Open Images数据集上进行实验。...我们通过将开放图像使用的弱标签图像数量减少100倍,使城市景观最多减少20倍来证明性能提升。

    74820

    CNN训练前的准备:pytorch处理自己的图像数据(Dataset和Dataloader)

    链接:cnn-dogs-vs-cats   pytorch给我们提供了很多已经封装好的数据集,但是我们经常得使用自己找到的数据集,因此,想要得到一个好的训练结果,合理的数据处理是必不可少的。...分析数据: 训练集包含500张狗的图片以及500张猫的图片,测试接包含200张狗的图片以及200张猫的图片。...,训练集中数据编号为0-499,测试集中编号为1000-1200,因此我们可以根据这个规律来读取文件名,比如参数传入: path1 = 'cnn_data/data/training_data/cats...2)、transforms.Resize((224, 224)),重新定义图像大小 3)、 transforms.ToTensor(),很重要的一步,将图像数据转为Tensor 4)、transforms.Normalize...test_data = DataLoader(dataset=test, batch_size=1, shuffle=True, num_workers=0, pin_memory=True) 最后我们只要给定义好的神经网络模型喂数据就

    1.4K10

    大数据的理想与现实之间

    另一场景,数据部门的人员被各部门各种的数据需求折腾得团团转,为了提供数据,加班到天亮。曾经有负责数据服务的处室,在总结年度工作时用到的数据是“提供报表上万张”。...上图是2009年联通开展的数据管理体系研究工作的成果,是对数据工作的一次很好的总结和提升。它是数据管理体系L0架构,揭示了数据管理工作的组成部分以及各个部分之间的关系。...与其他专业线不同,数据专业的管理核心是”数据”,数据质量、生命周期和安全管理都是核心的管控内容,而组织(人员、制度)和系统是数据产生价值的基本保障。...个人认为,“杀手级”应用首先应该是基于大数据的分析预测能力与个性化需求相结合的结果,比如:高德导航提供每条路的拥堵峰值的预测,用户输入出行计划时,就可以预测到一天甚至一周分时段的拥堵情况,选择出行时间,...乘着大数据的东风,我们的队伍已经再次壮大,但是,“理想很丰满,现实很骨感”,我们更应该意识到差距和肩上的责任,切忌浮躁,要脚踏实地。希望新来的同事们尽快适应,进入角色吧。

    49010

    数据科学:丰满的理想与骨感的现实

    我期望数据科学家的潜在影响与日俱增,每个公司都应该是一个“数据公司”。 但现实并非完全如此。 我的期望从何而来? 2016年,我参加了为期12周的数据科学训练营。...在这12周的训练期间,有11个项目是机器学习(ML)和人工智能(AI)方面的。此时,“机器学习”和“人工智能”在新闻中出现的次数已经创下了历史新高。...缺乏真正的数据科学领导者 大多数负责数据科学决策的高管都没有受过实际的数据科学理论和技术训练,相反,他们是“非数据驱动”、“即插即用”式地决策。 很少有团队拥有数据主管、数据科学经理或其他相关角色。...这些在线资源,有训练好的数据,这些数据很容易获得,有良好的文档记录,并且有良性的结构,这使你能够应用数据科学技术来回答问题。...我曾经参与过一个项目,根据消费者的消费习惯,用机器学习模型向消费者推荐商品,但这些预测是在建立在了一个有问题的模型训练上,所用数据中几乎没有有价值的东西。

    49630

    Github项目推荐 | DoodleNet - 用Quickdraw数据集训练的CNN涂鸦分类器

    DoodleNet - 用Quickdraw数据集训练的CNN涂鸦分类器 by yining1023 DoodleNet 是一个涂鸦分类器(CNN),对来自Quickdraw数据集的所有345个类别进行了训练...使用的数据来自Quickdraw数据集。...以下是项目清单: 使用 tf.js 训练涂鸦分类器 训练一个包含345个类的涂鸦分类器 KNN涂鸦分类器 查看网络机器学习第3周了解更多信息以及CNN和迁移学习如何运作。 1....训练一个包含345个类的涂鸦分类器 DoodleNet 对 Quickdraw 数据集中的345个类别进行了训练,每个类有50k张图片。...我将数据扩展到345个类,并添加了几个层来改善345个类的准确性。 我使用 spell.run 的搭载大容量RAM的远程GPU机器来加载所有数据并训练模型。 ?

    1.5K10

    在自己的数据集上训练TensorFlow更快的R-CNN对象检测模型

    检查数据集的健康状况,例如其类平衡,图像大小和长宽比,并确定这些数据可能如何影响要执行的预处理和扩充 可以改善模型性能的各种颜色校正,例如灰度和对比度调整 与表格数据类似,清理和扩充图像数据比模型中的体系结构更改更能改善最终模型的性能...数据集中显示的红细胞比白细胞或血小板要多得多,这可能会导致模型训练出现问题。根据问题背景,可能还要优先确定一个类别而不是另一个类别。 而且图像大小都相同,这使得调整尺寸的决定变得更加容易。...训练模型 将训练更快的R-CNN神经网络。更快的R-CNN是一个两阶段的对象检测器:首先,它识别感兴趣的区域,然后将这些区域传递给卷积神经网络。输出的特征图将传递到支持向量机(VSM)进行分类。...更快的R-CNN是TensorFlow对象检测API默认提供的许多模型架构之一,其中包括预先训练的权重。这意味着将能够启动在COCO(上下文中的公共对象)上训练的模型并将其适应用例。...使用Faster R-CNN的模型配置文件在训练时包括两种类型的数据增强:随机裁剪以及随机水平和垂直翻转。 模型配置文件的默认批处理大小为12,学习率为0.0004。根据训练结果进行调整。

    3.6K20

    Batch 大小对训练的影响

    一、概要: 批训练(mini-batch)的训练方法几乎每一个深度学习的任务都在用,但是关于批训练的一些问题却仍然保留,本文通过对MNIST数据集的演示,详细讨论了batch_size对训练的影响,结果均通过...usp=sharing)跑出,开始时对数据进行了归一化处理,其他的与经典CNN代码无差,(单GPU:Telsa T4),对结果怀疑的可以去复现一下。...三、批训练的本质: 如果把训练类比成从山顶到山脚的过程,批训练就是每一次你选定一个方向(一个batch的数据)往下走,batch的大小可以类比成你打算每一次走多少步,当然,深度学习是实验型科学,这里的例子只是尝试解释一下...训练时需要保证batch里面的数据与整个数据的差异不太大,如果当差异很大的时候,我们一开始遇到的路况跟后面的完全不一样,导致你直接懵逼,训练效果差。...x 是从总的分布 X 中取样出来,w 代表一个网络的权重参数, l(x,w) 意味着损失,将它们加起来再除以总数据分布的大小便是总损失了。

    3.6K20

    CNN循环训练的解释 | PyTorch系列(二十二)

    原标题:CNN Training Loop Explained - Neural Network Code Project 准备数据 建立模型 训练模型 建立训练 loop 分析模型的结果 单个 batch...这是因为模型每次都是在顶部创建的,我们从以前的文章中知道模型的权重是随机初始化的。 现在让我们看看如何修改这段代码来使用所有的batch,从而使用整个训练集进行训练。...所有 batch的训练 (epoch) 现在,为了训练我们的数据加载器中可用的所有批次,我们需要做一些更改并添加额外的一行代码: network = Network() train_loader =...> total_correct / len(train_set) 0.7017333333333333 在只有一个epoch(一次完整的数据传递)之后,这已经很好了。...即使我们做了一个epoch,我们仍然需要记住,权重被更新了600次,这取决于我们的批大小。如果让batch_batch的大小更大一些,比如10,000,那么权重只会更新 6 次,结果也不会很好。

    1.1K10

    如何根据训练验证损失曲线诊断我们的CNN

    神经网络设计的结构(比如神经网络的层数,卷积的大小等等) 那么如何去调整这些参数呢?...,很有可能是没有训练够;第五个经历了比较长的iterate才慢慢收敛,显然是初始化权重太小了,但是也有一种情况,那就是你的数据集中含有不正确的数据(比喻为老鼠屎),比如猫的数据集中放了两种狗的图像,这样也会导致神经网络花费大量的时间去纠结...上图则展示了更多的错误:左上一和二:没有对数据集进行洗牌,也就是每次训练都是采用同一个顺序对数据集进行读取;右上一:训练的过程中突然发现曲线消失了,为什么?...标准化和批标准化 标准化可能已经是训练神经网络的一个标准流程了,不论是在数据中进行标准化处理还是在网络中添加批标准化层,都是一种标准化的方法(两种使用一种即可)。...但是标准化技术通常只用于分类(以及衍生的一些应用),但并不适合与那种对输入图像大小比较敏感以及风格迁移生成类的任务,不要问为什么,结果会给你答案.. batch-normalization的好处:https

    2.1K51

    数据的输入、输出

    修饰符 功能 m 输出数据域宽,数据长度<m,左补空格;否则按实际输出 .n 对实数指定小数点后位数;对字符串指定实际输出位数 - 输出数据在域内左对齐(缺省为右对齐) + 指定在有符号数的整数面前显示...\t 水平制表(跳到下一个TAB位置) \\ 代表一个反斜杠字符 数据的输入 int getchar(void) : 成功返回读到的字符,失败或读到结束符返回EOF(-1)。...l 用于d,x,o前,指定输入为long型整数;用于e,f前指定输入为double型 m 指定输入数据的宽度 * 抑制符,指定输入项读入后不赋值给变量 用"%c"格式符时,空格和转义字符作为有效字符输入...输入数据时,遇到以下情况认为该数据结束; 空格、TAB、或回车 宽度结束 非法输入 scanf函数返回值是成功输入的变量的个数,当遇到非法输入时,返回值小于实际变量个数。...’\0’,在使用该函数的时候要注意数组越界的问题(因为gets不会检查长度,当输入的数据超过数组的长度的时候就会发生越界问题,所以在使用该函数时,需要注意字符的长度)。

    89710

    4.2 数据的输入

    01 输入的概念 所谓的输入是以计算机主机为主体而言的,从输入设备向计算机输入数据称为输入,C语言本身不包含输入语句。...02 scanf函数 1、一般形式 scanf(格式控制,地址表列) 格式控制和printf函数一样,地址表列是由若干个地址组成的表列,可以是变量的地址,或字符串的首地址。...2、格式声明 以%开始,以一个格式字符结束,中间可以插入附加的字符。 03 scanf函数的注意事项 1、scanf函数中的格式控制后面应当是变量地址,而不是变量名。...2、如果在格式控制字符串中除了格式声明以外还有其他字符,则在输入数据时在对应的位置上应输入这些字符相同的字符。 3、在用%c格式声明输入字符时,空格字符和转义字符中的字符都作为有效字符输入。...4、在输入数值数据时,如输入空格、回车、Tab键或遇到非法字符,认为该数据结束。

    5783329

    tensorflow的数据输入

    tensorflow有两种数据输入方法,比较简单的一种是使用feed_dict,这种方法在画graph的时候使用placeholder来站位,在真正run的时候通过feed字典把真实的输入传进去。...参数默认是True,也就是你传给他文件顺序是1234,但是到时候读就不一定了,我一开始每次跑训练第一次迭代的样本都不一样,还纳闷了好久,就是这个原因。...tensor(注意这个两个tensor是对应的,一个image对一个label,对叉了后便训练就完了),然后对image的tensor做data augmentation。...([高宽管道]),但是训练网络的时候的输入一般都是一推样本([样本数高宽*管道]),我们就要用tf.train.batch或者tf.train.shuffle_batch这个函数把一个一个小样本的tensor...(10类别分类10%正确率不就是乱猜吗) 原文:【tensorflow的数据输入】(https://goo.gl/Ls2N7s) 原文链接:https://www.jianshu.com/p/7e537cd96c6f

    68250

    我用90年代的古董电脑训练CNN

    虽然目前这项技术还没有开源,但早在93年就已经有人将CNN玩得很溜了。 这个人就是LeCun。 前不久,一段关于LeCun93年的视频火了。视频中展现的是,当时的文字识别系统已经用上了CNN。 ?...他首先是电脑的系统中编写了一种网络数据结构的编译器,并生成了可编译的 C 语言代码,在源代码中以权重和网表(netlist)代表文字。 整套系统是在算力为20MFLOPS 的DSP版上运行。...当时,手写数字数据集 MNIST还没有问世,LeCun则用摄像拍摄来构建文字识别系统的。除此之外,还需要解决文字缩放、位置等问题。...只需在纸上写好任意数字,不管任意大小形状,或者带有一定的“艺术性”,只要用摄像头导入电脑,就可以识别。 ? 而这位日本小哥则是在MNIST数据集上构建的,电脑上清晰展现了识别过程。...首先,读取MNIST的数字图像的信息。 ? 随后,进行一波卷积、池化等操作。 ? 最后经过SoftMax层,每个数字转换成概率或者权重,按照权重大小选出所得数字。 ?

    41320

    CNN中张量的输入形状和特征图 | Pytorch系列(三)

    卷积神经网络 在这个神经网络编程系列中,我们正在努力构建卷积神经网络(CNN),所以让我们看看在CNN中的张量输入。 ? 在前两篇文章中,我们介绍了张量和张量的基本属性——阶、轴和形状。...我现在要做的是把阶、轴和形状的概念用在一个实际的例子中。为此,我们将把图像输入看作CNN的张量。...注意,张量的形状 编码了关于张量轴、阶和索引的所有相关信息,因此我们将在示例中考虑该形状,这将使我们能够计算出其他值。下面开始详细讲解。 CNN输入的形状 CNN输入的形状通常长度为4。...可能的值是28 x 28,就像我们将在CNN项目中使用的fashion-MNIST数据集中的图像数据一样,或是VGG16神经网络使用的224 x 224图像大小,或者我们可以想象的其他图像尺寸。...就访问数据方面而言,我们需要三个索引。我们选择颜色通道,高度和宽度以获取特定的像素值。 图片批次(Image Batches) 这将引出四个轴中的第一个轴,用来代表批次大小。

    3.8K30

    【DL】训练神经网络时如何确定batch的大小?

    以下文章来源于公众号夕小瑶的卖萌屋 ,作者夕小瑶 当我们要训练一个已经写好的神经网络时,我们就要直面诸多的超参数啦。这些超参数一旦选不好,那么很有可能让神经网络跑的还不如感知机。...因此在面对神经网络这种容量很大的model前,是很有必要深刻的理解一下各个超参数的意义及其对model的影响的。 贴心的小夕还是先带领大家简单回顾一下神经网络的一次迭代过程: ?...这就是训练过程的一次迭代。...由此,最直观的超参数就是batch的大小——我们可以一次性将整个数据集喂给神经网络,让神经网络利用全部样本来计算迭代时的梯度(即传统的梯度下降法),也可以一次只喂一个样本(即严格意义上的随机梯度下降法,...理论上确实是这样的,使用单个单核cpu的情况下也确实是这样的。但是我们要与工程实际相结合呀~实际上,工程上在使用GPU训练时,跑一个样本花的时间与跑几十个样本甚至几百个样本的时间是一样的!

    88810
    领券