1:统计学习方法概论 1.1:统计学习特点,统计学习是关于计算机基于数据构建概率统计模型并运用模型进行数据分析和预测的一门学科。统计学习也称为统计机器学习 西蒙学习的定义:“如果一个系统能够通过执行某个过程改进他的性能,称之为学习”,按照这一个观点,统计学习就是计算机系统通过运用数据及统计方法提高系统性能的机器学习 2:统计机器学习的对象 统计机器学习的对象是数据,统计学习对于数据的基本假设是同类数据具有一定的统计规律性,这是统计学习的前提。(这里的同类数据是指具有某种共同性质的数据)。由于他们有统计规律
统计学习(statistical learning)是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科。
统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科,统计学习也称为统计机器学习。
统计学习基于训练数据集,根据学习策略,从假设空间中选择最优模型,最后需要考虑用什么样的计算方法来求解最优模型。
1.基础概念 统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科,也称统计机器学习。统计学习是数据驱动的学科,是一门概率论、统计学、信息论、计算理论、最优化理论及计算机科学等多个领域的交叉学科。 统计学习的对象是数据,它从数据出发,提取数据的特征,抽象出数据的模型,发现数据中的知识,又回到对数据的分析与预测中去。统计学习关于数据的基本假设是同类数据具有一定的统计规律性,这是统计学习的前提。 统计学习的目的就是考虑学习什么样的模型和如何学习模型。 统计学习方法包括模型的假
来源:专知 本文约1000字,建议阅读5分钟 这本《统计学习导论》不仅是优秀的“统计学习”或“机器学习”课程的教材,也是数据挖掘、数据分析等相关从业者不可或缺的参考书。 链接:https://www.statlearning.com/ 统计学习是一套以复杂数据建模和数据理解为目的的工具集,是近期才发展起来的统计学的一个新领域。本书出自统计学习领域声名显赫的几位专家,结合R语言介绍了分析大数据必不可少的工具,提供一些重要的建模和预测技术,并借助丰富的实验来解释如何用R语言实现统计学习方法。论题包括线性回归、
版权声明:本文为博主-姜兴琪原创文章,未经博主允许不得转载。
1.统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行分析与预测的一门学科。统计学习包括监督学习、非监督学习、半监督学习和强化学习。 2.统计学习方法三要素——模型、策略、算法,对理解统计学习方法起到提纲挈领的作用。 3.本书主要讨论监督学习,监督学习可以概括如下:从给定有限的训练数据出发, 假设数据是独立同分布的,而且假设模型属于某个假设空间,应用某一评价准则,从假设空间中选取一个最优的模型,使它对已给训练数据及未知测试数据在给定评价标准意义下有最准确的预测。 4.统计学习中,进行模型选择或者说提高学习的泛化能力是一个重要问题。如果只考虑减少训练误差,就可能产生过拟合现象。模型选择的方法有正则化与交叉验证。学习方法泛化能力的分析是统计学习理论研究的重要课题。 5.分类问题、标注问题和回归问题都是监督学习的重要问题。本书中介绍的统计学习方法包括感知机、近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场。这些方法是主要的分类、标注以及回归方法。它们又可以归类为生成方法与判别方法。
总第76篇 声明: 1、接下来的关于机器学习的专题内容都会借鉴李航老师的《统计学习方法》。 2、李航老师的书籍中把机器学习称为统计机器学习,我们在文章中简称为统计学习。 01|统计学习概览: 1、统计学习的概念 统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科。 2、统计学习的对象 统计学习的对象是数据,它从数据出发,提取数据的特征,抽象出数据的模型,发现数据中的知识,然后对数据进行分析与预测。 作为统计学习的对象,数据的形式是多样的,包括存在于计算机中的各种数字、
1.假设决策函数是输入变量的线性函数,那么模型的假设空间就是所有这些线性函数构成的函数集合。
经济基础决定上层建筑,这句话不论怎么看都是合适的,同样也是用于机器学习领域,基础决定深度。本文是入门级的统计学习(统计机器学习)的概要和统计学习全部内容的基础
项目地址:https://github.com/fengdu78/lihang-code
统计学习是机器学习中的一个重要分支。它是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测分析的一门学科。它是以计算机及网络为平台,以数据为研究对象的学科。我们用统计学习方法对数据进行预测、分析。
统计学习的对象是数据data。统计学中的数据通常是以变量或者变量组来表示数据。数据分为连续型和离散型,书中主要讨论的是离散型数据。
关注数据派THU(DatapiTHU)后台回复“20200618”获取《统计学习方法》相关资料
原文:Data Science Simplified Part 2: Key Concepts of Statistical Learning 翻译:Kaiser 在系列的第一篇,我们已经接触到了一些
本文为你分享一个 GitHub 项目,其用 Python 复现了课程内容,并提供代码实现和课件。
1.统计学习 统计学习的对象是数据,它从数据出发,提取数据的特征,抽象出数据的模型,发现数据中的知识,又回到对数据的分析与预测中去。统计学习关于数据的基本假设是同类数据具有一定的统计规律性,这是统计学习的前提。 统计学习的目的就是考虑学习什么样的模型和如何学习模型。 统计学习方法包括模型的假设空间、模型选择的准则以及模型学习的算法。实现统计学习的步骤如下: (1) 得到一个有限的训练数据集合; (2)
本周,我们为您带来Trevor Hastie,Robert Tibshirani和Jerome Friedman撰写的《统计学习的要素》。该统计(和机器)学习领域的开创性著作的第一版最初于近20年前出版,并迅速巩固了自身地位,成为该领域的领先著作之一。然而,在过去的几年中,统计学习的要素并没有保持一成不变,因此该书的第二版于2009年出版。这是我们今天讨论的第二版,尤其是2017年的第12版。
统计学习(statistical learning)是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测和分析的一门学科。统计学习也称为统计机器学习(statistical machine learning)。现在人们提到的机器学习往往是指统计机器学习。
《统计学习方法》是计算机及其应用领域的一门重要的学科。《统计学习方法》全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文献。
不管你是学习CV,还是NLP,或者其他方向,应该都多多少少看过或者听过李航教授的《统计学习方法》这本书。Amusi 认为这是一本超级棒的AI入门,再具体一点机器学习入门的书籍。
以下文章来源于Datawhale ,作者王茂霖 本文分享了机器学习概念,学习路线和知识体系,希望帮助大家更好地入门机器学习。 Part 1 机器学习相关概念 现如今,关于人工智能(AI)领域出现
导语:统计学习即机器学习,是计算机及其应用领域的一门重要学科。此前,李航老师完成的《统计学习方法》是了解机器学习最好的教材之一,该书从 2005 年开始写作一直到 2012 年完成,包含了众多主要的监督学习算法与模型。最近,《统计学习方法》第二版正式发布,通过 6 年时间的努力,在第一版的基础上又增加了无监督学习的主要算法与模型。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 监督部分 第二章 感知机: 博客:统计学习方法|感知机原理剖析及实现 实现:perceptron/perceptron_dichotomy.py 第三章 K近邻: 博客:统计学习方法|K近邻原理剖析及实现 实现:KNN/KNN.py 第四章 朴素贝叶斯: 博客:统计学习方法|朴素贝叶斯原理剖析及实现 实现:NaiveBayes/NaiveBayes.py 第五章 决策树: 博客:统计学习方法|决策树原理剖析及实现 实现:
之前在硕士阶段,统计学习(SL)既不是我的研究方向、也不是我的研究工具,所以了解甚少。之前我与 SL 唯一的接触停留在非常走马观花的读过一遍 ISLR 那本书,积累的技能仅限于在 R 里调包来 fit 简单的 model。简单来说就是了解的东西连皮毛都算不上,更不用提个中细致的推导以及背后严谨的数学了。
李航是日本东京大学计算机科学博士,曾任微软亚洲研究院高级研究员及主任研究员、华为诺亚方舟实验室首席科学家,现任字节跳动人工智能实验室总监。他的研究方向包括信息检索、自然语言处理、统计机器学习及数据挖掘等。
少数圈内好友应该是早就得到消息,我会邀请statquest主讲人,YouTube博主,joshua来大陆访问,计划在3月中旬举办粉丝见面会,可惜美国政策太炒蛋,行程胎死腹中。 不过joshua的视频教程仍然是值得大力推荐!
AI 科技评论按:继移动互联网之后,人工智能技术已经席卷全球。2017 年 3 月 3 日,中国人工智能学会(CAAI)将举办 AIDL2《机器学习前沿》会议,邀请了南京大学的周志华教授担任学术负责人,他届时也将在会议上发表致辞。而在今年 7 月份的 GAIR 大会上,AI 科技评论也将邀请周志华教授进行主题演讲的分享。 周志华教授是 ACM Fellow(美国计算机学会会士),AAAS Fellow(美国科学促进会会士),AAAI Fellow(国际人工智能学会会士),IEEE Fellow(国际电气
机器之心报道 机器之心编辑部 经典的《统计学习导论》又出第二版了,相比于第一版,新版增加了深度学习、生存分析、多重测试等内容,可免费下载。 斯坦福经典教材《The Element of Statistical Learning》(简称 ESL)被称为频率学派的统计学习「圣经」,由 Trevor Hastie、Robert Tibshirani、Jerome Friedman 这三位大师共同完成。这本书介绍了神经网络、支持向量机、分类树和 boosting、图模型、随机森林等各类机器学习算法,可以帮助读者了解
建议有时间的同学可以这三个部分按照顺序学习,时间少的同学,我建议直接看机器学习经典算法,遇到问题查一下数学基础,也可以一边看机器学习经典算法,一边看统计学习方法,查漏补缺。
在机器学习上,首先要推荐的是两部国内作者的著作:李航博士所著的《统计学习方法》和周志华教授的《机器学习》。 《统计学习方法》采用“总 - 分 - 总”的结构,在梳理了统计学习的基本概念后,系统而全面地
统计学习首要考虑的问题是学习什么样的模型。在监督学习中,模型就是所有要学习的条件概率分布或决策函数。模型的假设空间包含所有可能的条件概率分布或决策函数。
人力资本分析的重点归根结底还是在于分析,统计学作为数据分析的基础,是每一个尝试进入人力资本分析领域的小伙伴得不得了解的内容。
无监督学习是指从无标注数据中学习模型的机器学习问题。无标注数据是自然得到的数据,模型表示数据的类别、转换或概率无监督学习的本质是学习数据中的统计规律或潜在结构,主要包括聚类、降维、概率估计。
机器之心报道 编辑:张倩 《统计学习导论》很经典,但用的是 R 语言,没关系,这里有份 Python 版习题实现。 斯坦福经典教材《The Element of Statistical Learning》(简称 ESL)被称为频率学派的统计学习「圣经」,由三位统计学大师——Trevor Hastie、Robert Tibshirani、Jerome Friedman 共同完成。这本书介绍了神经网络、支持向量机、分类树和 boosting、图模型、随机森林、集成方法、Lasso 最小角度回归和路径算法、非负矩
注:本页面主要针对想快速上手机器学习而又不想深入研究的同学,对于专门的researcher,建议直接啃PRML,ESL,MLAPP以及你相应方向的书(比如Numerical Optimization,Graphic Model等),另外就是Follow牛会牛paper,如果谁有兴趣也可以一起来整理个专业的汇总页。本页面将持续更新,敬请关注,如有推荐的文章请留言,谢谢! 000 开源工具 机器学习的开源工具 Python机器学习库 C++矩阵运算库推荐 001 公开课 Machine Learning |
【导读】转眼之间春节假期已所剩无几,大家是否也开始制定新一年的学习计划?本文就为大家推荐一个机器学习书单,其中大多数可以免费观看,并附上pdf链接。书单内容包括但不局限于:机器学习、深度学习、数据挖掘
机器学习手册分为三个部分,数学基础、机器学习经典算法、统计学习方法。建议有时间的同学可以这三个部分按照顺序学习,时间少的同学,我建议直接看机器学习经典算法,遇到问题查一下数学基础,也可以一边看机器学习经典算法,一边看统计学习方法,查漏补缺。
新智元推荐 来源:专知 编辑:克雷格 【新智元导读】转眼之间春节假期已所剩无几,大家是否也开始制定新一年的学习计划?本文就为大家推荐一个机器学习书单,其中大多数可以免费观看,并附上pdf链接。书单内容包括但不局限于:机器学习、深度学习、数据挖掘、贝叶斯理论、统计学习等。都是领域内最好的学习资料,绝对值得阅读,大家可以根据自己的研究方向自行选读。 机器学习是人工智能的应用,它使系统能够自动地从经验中学习和改进。在这篇文章中,我们列出了一些最好的免费机器学习书籍,绝对值得阅读。 1、Mining of
有了这些书,再也不愁下了班没妹纸该咋办了。慢慢来,认真学,揭开机器学习和数据挖掘这一神秘的面纱吧! 《机器学习实战》:本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的
两者之间并不一样。如果机器学习仅仅是统计学基础上的锦上添花,那么其结构只能像沙堡一样脆弱。
本文介绍了机器学习入门书籍,从机器学习的定义、发展历程、算法、数学、编程等多个角度推荐了一些经典书籍,并对每本书籍进行了简要介绍。
《机器学习实战》:本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。 全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统
输入与输出所有可能取值的集合成为输入空间与输出空间。每个具体的输入是一个实例,通常由特征向量表示,所有特征向量存在的空间成为特征空间。
你可以使用描述性统计方法将原始观测数据转换为你可以理解和共享的信息,也可以使用推断统计方法,通过数据的小样本对整个域进行推理。
与人们的普遍认识相反,机器学习实际上已经有数十年的历史了。受模型计算需求和早期算力限制的影响,这一领域之前并未兴起。然而,得力于近年来信息爆炸所带来的海量数据优势,机器学习正方兴未艾。
接下来我会依次整理《统计学习方法》第2版课件的每一章节PPT到公众号里,感觉这样直接学习更加方便友好些,希望这种方式可以真正帮助到各位。
开篇废话: 机器学习解决的问题和李航老师统计学习方法所描述的统计学问题不谋而合。李航定义为统计学习三要素:方法=模型+策略+算法。这不光是统计学习必经之路,这也是ML、DL三大关键所在,如果你这三块系统化了以后,都可以往里套。 学习机器学习必由之路:(1)模型。(2)策略。(3)算法。 那么我的理解: (1)模型 模型:官方一点就是:所要学习的条件概率或决策函数;譬如一个数学问题就是你针对解决问题列的方程组,而对于统计学来说就是我们常见的:感知机、K近邻、贝叶斯、决策树、逻辑回归、SVM等,有人就会说这
领取专属 10元无门槛券
手把手带您无忧上云