Oracle数据库从10g开始,启用以时间模型统计为主,命中率为辅等性能度量指标。基于时间模型统计,主要是基于操作类型测量在数据库中花费的时间的统计信息。...最重要的时间模型统计是数据库时间,或DB时间。数据库时间表示在数据库调用中所花费的总时间,是实例工作负载量的总指示器。本文描述时间模型统计相关知识点。...在Oracle数据库中,最重要的时间模型统计是DB Time和DB CPU。...DB Time测量时间实例启动后开始累积。由于DB时间是由所有非空闲用户会话的时间相结合来计算的,所以DB时间可能超过实例开始后所经过的实际时间。...在cache中寻找新的sequence的时间是不计算在内。而对于non-cached 的情况,那么这个时间就是获取 nextval 的时间。
因此,私募云通将在接下来一段时间内,推出《用Python玩转统计模型》系列,用最通俗易懂的语言带你走进统计模型的世界。 赶快转发,让更多小伙伴知道这个消息吧! 什么是OLS回归?...最常见的拟合方法是最小二乘法,即OLS回归。它时刻关注着实际测量数据,以及拟合直线上的相应估计值,目的是使二者之间的残差有最小的平方和。...但是由于它的计算成本低,并且相比复杂模型更容易解释,因此OLS回归被广泛地接受。 模型估计出来后,我们要回答的问题是——这个模型对因变量的解释力如何。...OLS实证 1)从MYSQL读取数据 2)调取样本基金的复权累计净值数据 3)数据处理和计算 4)建立OLS回归模型 OLS回归结果分析 OLS的回归结果如下: 其中x1和x2分别代表沪深300和中证...总结 OLS回归在计算成本等方面占有一定优势,但有时不太具有说服力。例如,模型可能存在异方差性。
在周二我给精算师上的5小时机器学习速成课结束时,皮埃尔问了我一个有趣问题,是关于不同技术的计算时间的。我一直在介绍各种算法的思想,却忘了提及计算时间。我想在数据集上尝试几种分类算法来阐述这些技术。...注意到对于样条函数,计算时间也很相似 > library(splines) > system.time(fit<-glm(PRONO~bs(INSYS)+., + data=myocarde_large...elapsed 50.327 0.050 50.368 > object.size(fit) 6,652.160 kbytes 我也想尝试caret,这个软件包很适合用来对比模型...在JRSS-A 计算精算科学(R语言)这本书的解读中,Andrey Kosteko注意到这个软件包甚至没有被提及,相关内容也是空白的。...elapsed 9.469 0.052 9.701 > object.size(fit) 846.824 kbytes 这两种技术都需要10秒左右,远远超过基本的逻辑回归模型
和之前的文章类似,本文只讲如何用代码实现,不做理论推导与过多的结果解释(事实上常用的模型可以很轻松的查到完美的推导与解析)。因此读者需要掌握一些基本的统计模型比如回归模型、时间序列等。...Statsmodels简介 在Python 中统计建模分析最常用的就是Statsmodels模块。Statsmodels是一个主要用来进行统计计算与统计建模的Python库。...主要有以下功能: 探索性分析:包含列联表、链式方程多重插补等探索性数据分析方法以及与统计模型结果的可视化图表,例如拟合图、箱线图、相关图、时间序列图等 回归模型:线性回归模型、非线性回归模型、广义线性模型...时间序列:ARMA 关于时间序列的模型有很多,我们选择ARMA模型示例,首先导入相关包并生成数据 %matplotlib inline import numpy as np import statsmodels.api...最后想多说一句,全文没有出现太多模型的理论知识,因为这些模型的推导过程随便百度一搜都能得到十分详细的优质回答,因此在学会如何用计算机实现之后必须要回过头去理解模型里每一个参数是怎样得到,又有哪些含义才算真正搞定
从上面两张图可以看出,残差与拟合值、解释变量 lnq 之间呈现线性关系,由此猜测存在异方差。 2.2 BP 检验 假设回归模型: 记 ) 。...---- 【总结】BP 检验步骤(伍德里奇《计量经济学导论》(第五版)p.225) 使用 OLS 估计原模型 ,得到 OLS 残差平方 (每次观测得到一个)。...计算 F 统计量或者 LM 统计量并计算 p 值。(前者使用 分布,后者使用 分布)。如果这个 p 值很小,即低于选定的显著性水平,那么就拒绝同方差性的原假设。...---- * 2.BP 检验 estat hettest, iid rhs /* 其中: - “estat”指 post-estimation statistics(估计后统计量),即在完成估计后所计算的后续统计量...),即在完成估计后所计算的后续统计量。
然后用上述数据,利用statsmodels中的·.OLS`得到一元线性回归模型。...Variable 模型中的响应变量 Model 用于训练的模型名称 Method 模型的参数用什么方法计算 No....回归结果逼近真实值的统计量,范围在 之间,越大表示模型拟合得越好 Adj. R-squared 根据观察次数和残差的自由度调整以上值 F-statistic 模型训练有效度。...Prob (JB) 上面统计量结果转换为概率 Durbin-Watson 自相关检验。在时间序列分析中通常很重要 Cond....No 多重共线性检验(如果与多个参数拟合,则参数彼此相关) 如此,即可实现统计中的线性回归模型构建。
0.导论 0.0 初、中、高级计量经济学 初级以计量经济学的数理统计学基础知识和经典的线性单方程模型理论与方法为主要内容; 中级以用矩阵描述的经典的线性单方程模型理论与方法、经典的线性联立方程模型理论与方法...等于 的实际值与其拟合值 之间相关系数的平方。即: 回归方程中的 过低是很正常的,对于横截面分析来说,一个看似很低的 值,并不意味着 OLS 回归方程没有用。...1.4 度量单位和函数形式 1.4.1 改变度量单位对 OLS 统计量的影响 当因变量的度量单位改变时,很容易计算出截距和斜率估计值的变化。...若自变量被除以或乘以一个非零常数 ,则 OLS 斜率系数也会分别被乘以或者除以 。 仅改变自变量的度量单位,不会影响截距估计值。 模型的拟合优度不依赖于变量的度量单位。...SLR.5 假定对证明 和 的无偏性毫无作用,作出此假定的意义在于简化 和 方差的计算,而且它还意味着 OLS 具有有效性。 ?
但是如果你想拟合更高维的模型,则可以从线性特征数据中构建多项式特征并拟合模型。 方法二:Stats.linregress( ) 这是一个高度专业化的线性回归函数,可以在SciPy的统计模块中找到。...然而因为它仅被用来优化计算两组测量数据的最小二乘回归,所以其灵活性相当受限。因此,不能使用它进行广义线性模型和多元回归拟合。但是,由于其特殊性,它是简单线性回归中最快速的方法之一。...方法五:Statsmodels.OLS ( ) Statsmodels是一个小型的Python包,它为许多不同的统计模型估计提供了类和函数,还提供了用于统计测试和统计数据探索的类和函数。...可根据现有的统计包进行测试,从而确保统计结果的正确性。 对于线性回归,可以使用该包中的OLS或一般最小二乘函数来获得估计过程中的完整的统计信息。...一个需要牢记的小技巧是,必须手动给数据x添加一个常数来计算截距,否则默认情况下只会得到系数。以下是OLS模型的完整汇总结果的截图。结果中与R或Julia等统计语言一样具有丰富的内容。
如果不知道该模型是否是线性模型的情况下可以使用statsmodels,statsmodels是python中专门用于统计学分析的包,它能够帮我们在模型未知的情况下来检验模型的线性显著性。...import seaborn as sns import yfinance as yf symbol = 'TCEHY' df.head() Statsmodels Statsmodels是Python进行拟合多种统计模型...statsmodels包含许多经典的统计方法,但没有贝叶斯方法和机器学习模型。...Statsmodels包含的模型有: 线性模型,广义线性模型和健壮线性模型 线性混合效应模型 方差(ANOVA)方法分析 时间序列过程和状态空间模型 广义矩估计 Statsmodels 的线性模型有两种不同的接口...0.519,模型已经严重过拟合了。
这个数值主要用于诊断不同的模型中使用。 Sigma 西格玛值为标准化剩余平方和(剩余平方和除以残差的有效自由度)的平方根。它是残差的估计标准差。此统计值越小越好。主要用于 AICc 计算。...AICc(关于赤则的信息,查看上面给出的白话空间统计二十四:地理加权回归(五)) AICc是模型性能的一种度量,有助于比较不同的回归模型。...考虑到模型复杂性,具有较低 AICc 值的模型将更好地拟合观测数据。AICc不是拟合度的绝对度量,但对于比较适用于同一因变量且具有不同解释变量的模型非常有用。...在很多论文里面,将GWR的AICc值与OLS的AICc值进行比较,然后根据AICc的值,得出局部回归模型(GWR)比全局模型(OLS)具有更大的优势。(而不是单纯的通过比较拟合度或者性能)。...R2:R 平方是拟合度的一种度量。其值在 0.0 到 1.0 范围内变化,值越大越好。此值可解释为回归模型所涵盖的因变量方差的比例。R2 计算的分母为因变量值平方和。
OLS回归。当与二元因变量一起使用时,这个模型被称为线性概率模型,可以作为描述条件概率的一种方式。...这部分输出显示了模型中使用的各个案例的偏差残差的分布。下面我们讨论如何使用偏差统计的摘要来评估模型的拟合度。...系数表下面是拟合指数,包括无效和偏差残差以及AIC。稍后我们将展示一个例子,说明如何使用这些值来帮助评估模型的拟合。 我们可以使用confint函数来获得系数估计值的置信区间。...summary(mylogit)产生的输出包括拟合指数(显示在系数下面),包括无效和偏差残差以及AIC。衡量模型拟合度的一个指标是整个模型的显著性。...检验统计量是分布式的卡方,自由度等于当前模型和无效模型之间的自由度差异(即模型中预测变量的数量)。为了找到两个模型的偏差差异(即检验统计量),我们可以使用以下命令。
回归技术有多种形式-线性,非线性,有毒,基于树,但是其核心思想在整个频谱上仍然几乎相似,并且可以应用于各种数据驱动的分析问题,例如金融,医疗保健,服务,线性回归是最基础的技术,它根植于经过时间考验的统计学习和推理理论...,大多数统计人员出身的数据科学家运行拟合优度拟合检验它们的回归模型规律。...使用statsmodel.ols()函数进行 模型拟合主要模型拟合使用statsmodels.OLS方法完成。这是一个线性模型拟合实用程序,感觉非常类似于R中强大的“ lm”函数。...简而言之,通过该模型拟合的模型已经提供了有关该模型的丰富统计信息,例如与所有自变量,R平方和调整后的R平方,AIC和BIC等相对应的t统计量和p值。...方差影响因子— VIF 此数据集的OLS模型摘要显示了多重共线性警告。但是,如何检查是什么原因引起的呢? 可以计算每个独立变量的方差影响因子。
它的功能覆盖了线性回归、广义线性模型、时间序列分析、非参数方法等多种领域。 Statsmodels 的优势 丰富的统计模型:支持多种统计模型,从简单的线性回归到复杂的时间序列模型,应有尽有。...详尽的统计输出:提供详细的回归结果、诊断信息和模型拟合的统计量。 Statsmodels 安装步骤 ⚙️ 猫哥 亲自带您完成安装过程,让您顺利开启Statsmodels的学习之旅。 1....) # 构建OLS模型 model = sm.OLS(data['y'], X).fit() # 输出模型摘要 print(model.summary()) 在这里,我们使用了OLS(普通最小二乘法...结果解读 模型的摘要信息非常详细,包括 回归系数、 标准误差、 t值、 p值 和 置信区间 等。通过这些信息,我们可以深入了解模型的拟合情况和各个自变量的显著性。...如果数据质量不过关,模型的结果可能会偏离真实情况。 2. 模型过拟合 猫哥提醒您:避免使用过多的自变量,尤其是在数据量较小的情况下。过拟合会导致模型在训练数据上表现很好,但在新数据上效果差。
然而,具有讽刺意味的是,除非你是在一个专业领域,如计算机视觉或自然语言处理,很多时候,简单的模型,如线性回归, 实际上比复杂的黑箱模型,比如神经网络和支持向量机,能更好地解决你的问题。...幸运的是,线性回归已经存在了很长时间(确切地说,从19世纪初开始),以至于统计学家们早就找到了一种方法,在任何违背假设的情况发生时都能避开它们,同时仍然保留了与线性回归相关的许多优点。...这样就很难解释模型的系数,也很难确定它们的统计意义,因为模型将两个不同名称下的一个变量,跨两个单独的输入变量的影响分割开来。...使用Python的statsmodels包将模型拟合到这个数据集,得到以下拟合参数: import pandas as pd import statsmodels.formula.api as smf...多重共线性问题最简单的解决方案是从模型中删除一个高度相关的输入变量(与是哪一个无关)。 利用特征工程处理非线性问题 线性回归本质上是通过数据拟合一条(直线)最佳拟合线来实现的。
如果不知道该模型是否是线性模型的情况下可以使用statsmodels,statsmodels是python中专门用于统计学分析的包,它能够帮我们在模型未知的情况下来检验模型的线性显著性。 ?...Statsmodels Statsmodels是Python进行拟合多种统计模型、进行统计试验和数据探索可视化的库。statsmodels包含许多经典的统计方法,但没有贝叶斯方法和机器学习模型。...Statsmodels包含的模型有: 线性模型,广义线性模型和健壮线性模型 线性混合效应模型 方差(ANOVA)方法分析 时间序列过程和状态空间模型 广义矩估计 Statsmodels 的线性模型有两种不同的接口...ols # 普通最小二乘法拟合 from statsmodels.sandbox.regression.predstd import wls_prediction_std # stock_model...因此通过增加指数型重新拟合数据。根据模型得分找出适合数据的回归模型。
【2】随着计算机技术的不断突破,分位数回归软件包现已是主流统计软件R、SAS等中的座上客了,分位数回归也就自然而然地成为经济、医学、教育等领域的常用分析工具。...建立分位数回归模型; 4. 利用模型与统计软件进行计算,观察其特性; 5. 与最小二乘法进行比较,得出结论。...qr1$coefficients 与ols回归线段作比较 summary(OLS) OLS(普通二乘回归) 上图是普通二乘回归的拟合图,从结果来看大部分点被回归预测的置信区间所覆盖。...用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析 R使用LASSO回归预测股票收益 金融时间序列模型ARIMA 和GARCH 在股票市场预测应用 时间序列分析模型...R语言中的copula GARCH模型拟合时间序列并模拟分析 R语言乘法GARCH模型对高频交易数据进行波动性预测 R语言GARCH-DCC模型和DCC(MVT)建模估计 Python使用GARCH
这是 Scipy 中的统计模块中的一个高度专门化的线性回归函数。其灵活性相当受限,因为它只对计算两组测量值的最小二乘回归进行优化。因此,你不能用它拟合一般的线性模型,或者是用它来进行多变量回归分析。...除了已拟合的系数和截距项(intercept term)外,它还会返回基本的统计学值如 R² 系数与标准差。...( ) statsmodel 是一个很不错的 Python 包,它为人们提供了各种类与函数,用于进行很多不同统计模型的估计、统计试验,以及统计数据研究。...对于线性回归,人们可以从这个包调用 OLS 或者是 Ordinary least squares 函数来得出估计过程的最终统计数据。...需要记住的一个小窍门是,你必须要手动为数据 x 添加一个常数,以用于计算截距。否则,只会默认输出回归系数。下方表格汇总了 OLS 模型全部的结果。
但我们不可夸大线性模型(快速且准确地)拟合大型数据集的重要性。如本文所示,在线性回归模型中,「线性」一词指的是回归系数,而不是特征的 degree。...除了已拟合的系数和截距项(intercept term)外,它还会返回基本的统计学值如 R² 系数与标准差。...( ) statsmodel 是一个很不错的 Python 包,它为人们提供了各种类与函数,用于进行很多不同统计模型的估计、统计试验,以及统计数据研究。...对于线性回归,人们可以从这个包调用 OLS 或者是 Ordinary least squares 函数来得出估计过程的最终统计数据。...需要记住的一个小窍门是,你必须要手动为数据 x 添加一个常数,以用于计算截距。否则,只会默认输出回归系数。下方表格汇总了 OLS 模型全部的结果。
如果存在异方差的情况,OLS回归中的回归系数依然是无偏估计量,但是无法进行假设检验和区间估计,因为t统计量不再服从t分布,F统计量不再服从F分布。 检验异方差性是否存在的方法包括画图检验和统计量检验。...表示模型中的应变量,假设残差均值为零。 ? 原假设为 ? ,即不存在异方差。 ? 通过统计量LM服从卡方分布可以判断是否拒绝原假设,若统计量显著,表明模型存在异方差。...我们选择Huber method,并对全部样本时间范围内(2014年1月至2018年12月)的沪深300成分股分别进行OLS回归,WLS回归,稳健回归,下表陈列了三种回归方法下的风格因子的估计值和参数估计值的标准误差...分别求得三个样本下的因子收益率估计值,画出因子收益累计曲线,并记录表征回归模型拟合程度的统计量月均adjusted rsquared。...沪深300成分股样本下模型拟合程度最优,月均adjusted rsquared大约为30%,中证500成分股和全市场样本下模型拟合程度较差,月均adjusted rsquared不到15%,尤其是全市场样本
领取专属 10元无门槛券
手把手带您无忧上云