堆内存变大后,虽然垃圾收集的频率减少了,但每次垃圾回收的时间变长。 如果堆内存为 14 G,那么每次 Full GC 将长达数十秒。如果 Full GC 频繁发生,那么对于一个网站来说是无法忍受的。
现在稍微大一点的网站基本上都有好几个子域名,比如www.xz577.com, xz577.com, vip.xz577.com,这些网站如果需要共用用户登录信息,那么就需要做到session共享,当然前提是有相同的主域名。
客户端无法连接服务端,查看服务器的端口开启状况,服务端口并没有开启。于是启动服务端,启动几秒后,服务端崩溃,重复启动,服务端依旧在启动几秒后崩溃。
说在前面的话 朋友,你经历过部署好的服务突然内存溢出吗? 你经历过没有看过Java虚拟机,来解决内存溢出的痛苦吗? 你经历过一个BUG,百思不得其解,头发一根一根脱落的烦恼吗? 我知道,你有过! 但是我还是要来说说我的故事.................. ---- 背景: 有一个项目做一个系统,分客户端和服务端,客户端用c++写的,用来收集信息然后传给服务端(客户端的数量还是比较多的,正常的有几千个), 服务端用Java写的(带管理页面),属于RPC模式,中间的通信框架使用的是thrift。 thrif
写这篇文章,笔者想和大家深入探讨该场景的架构优化方案。希望大家读完之后,可以对异步有更深刻的理解。
(2) 对于使用like的查询,查询如果是’%xx’不会使用到索引。而’xx%’会使用到索引。
Redis是一个key-value的Nosql数据库,先存到内存中,会根据一定的策略持久化到磁盘,即使断电也不会丢失数据,支持的数据类型比较多。主要用来做缓存数据库的数据和web集群时当做中央缓存存放seesion。
Redis是一个基于内存的键值数据库,其内存管理是非常重要的。本文内存管理的内容包括:过期键的懒性删除和过期删除以及内存溢出控制策略。
总的来说就是依照这些原则来解决这些问题以达到 GC 低频 GC 停顿时间短,以及低内存占用和高吞吐。
在Java应用程序开发中,OutOfMemoryError(OOM)是一个令人头痛的问题。当JVM中的内存无法满足应用程序的需求时,就会抛出这个错误。本文将深入探讨OOM的三大场景:堆内存溢出、方法区内存溢出和栈内存溢出,并分析它们的原因,提供相应的实战解决方案。
所谓的 JVM 崩溃,一般情况下就是指内存溢出,也就是 OutOfMemoryError 和 StackOverflowError。另外还有一种情况就是堆外内存占用过大,这种情况会导致 JVM 所在机器的内存被撑爆,从而导致机器重启等异常情况发生,我们把这种情况叫做内存泄漏。
研发工程师日常的工作除了开发实现新需求之外,排查定位问题也是重要的组成部分。如果在发生线上故障的时能够快速定位线上bug并且修复bug,不仅是研发工程师技术能力的重要体现,同时也可以帮助线上及时止血避免平台故障进一步蔓延,从而导致影响用户体验或者产生不可挽回的资损。但是实际上很多研发工程师由于工作经验还不充足,导致经常在遇到问题的时候不知所措,不知道该如何分析排查定位问题。因此本文主要聚焦日常工作中经常遇到的异常场景,梳理了问题排查定位的思路大图,这样大家在实际项目中如果遇到类似的异常场景,可以按照思路大图进行问题排查定位解决,相信大家掌握了故障定位的分析套路之后就可以做到遇到问题时临危不乱。
redis适合放一些频繁使用,比较热的数据,因为是放在内存中,读写速度都非常快,一般会应用在下面一些场景,排行榜、计数器、消息队列推送、好友关注、粉丝。
在构建和维护Java服务端应用程序时,经常会面临各种问题,如内存溢出(OOM)、高CPU利用率、高负载以及类冲突。这些问题可能导致应用程序崩溃或性能下降,因此及时的问题排查和解决至关重要。本篇博客将深入探讨这些问题的排查方法,并提供代码示例以帮助您更好地理解和处理这些常见的Java服务端问题。
最近在工作中经常和性能压测工作打交道,积累了一些性能分析经验,我觉得这些经验对每一个开发者都有帮助的,能开发出性能高的代码也是我们的最终目标。
在 上一篇 我们主要介绍了所遇到问题的五点,那么今天接下来讨论剩下的问题,我们先再回顾一下之前讨论的问题:
JVA源码被编译会生成字节码文件,通过不同平台上下载的不同版本的JVM,将字节码文件翻译成对应的机器码。注意的是,跨平台的Java程序,不是JVM。JVM是使用C/C++开发的,是编译后的字节码,不能跨平台。
如何在高性能服务器上进行JVM调优? 为了充分利用高性能服务器的硬件资源,有两种JVM调优方案,它们都有各自的优缺点,需要根据具体的情况进行选择。 1. 采用64位操作系统,并为JVM分配大内存 我们知道,如果JVM中堆内存太小,那么就会频繁地发生垃圾回收,而垃圾回收都会伴随不同程度的程序停顿,因此,如果扩大堆内存的话可以减少垃圾回收的频率,从而避免程序的停顿。 因此,人们自然而然想到扩大内存容量。而32位操作系统理论上最大只支持4G内存,64位操作系统最大能支持128G内存,因此我们可以使用64位操作系
接下来,继续给大家分享一个《Java 面试指南-字节跳动面经同学 7》的面试原题,来看看字节面试官都喜欢问哪些问题,好做到知彼知己百战不殆。
相信大家都遇到过内存溢出的情况,内存溢出一般会使系统崩溃,甚至还会使服务卡死。所以规避内存溢出和及时解决内存溢出尤为重要。
如果我们所在公司的业务量比较大,在生产环境经常会出现JVM内存溢出的现象,那我们该如何快速响应,快速定位,快速恢复问题呢?
内存问题,脑瓜疼脑瓜疼。脑瓜疼的意思,就是脑袋运算空间太小,撑的疼。本篇是《荒岛余生》系列第三篇,让人脑瓜疼的内存篇。其余参见:
内存溢出 out of memory : 通俗理解就是内存不够用了,是我们工作当中经常会遇到的问题,内存溢出有可能发生在正常的情况下,而非代码层面问题导致,比如高并发下,大量的请求占用内存,垃圾回收机制无法进行回收,而导致的内存溢出,这种情况就需要我们去调整架构了。一但出现内存溢出问题,我们需要快速定位并解决,尤其是生产环境,所以针对内存溢出问题,我们需要掌握一些常用的排查工具,针对不同场景、现象有快速排查思路。引起内存溢出的原因有很多种,常见的有以下几种:
一、Web Cache 在介绍Web cache时,我们需要简单介绍缓存的理解 1.1 缓存解释 缓存通常是基于键值对来缓存的,键通过hash计算后,存放于内存某个空间,所以键可以理解为索引。而值是存
很多人在面试时,会被问到这样的问题:遇到过什么系统故障?怎么解决的?下面是笔者根据自己15年互联网研发经历总结的多个线上故障真实案例。相信可以帮你从容应对面试官的提问!
Topic 每条发布到 Kafka 集群的消息都有一个类别,这个类别被称为 Topic。(物理上不同 Topic 的消息分开存储,逻辑上一个 Topic 的消息虽然保存于一个或多个 broker 上但用户只需指定消息的 Topic 即可生产或消费数据而不必关心数据存于何处)
公司的业务量比较大,在生产环境如果经常出现OOM(Out Of Memory,JVM内存溢出)的现象,那该如何快速响应,快速定位,快速恢复问题呢?
框架设计是指在软件开发中,为了实现某种功能或解决某种问题,设计出一套通用的解决方案,以便在多个项目中复用。框架设计的目的是提高开发效率、降低开发成本、提高软件质量和可维护性。
前阵子处理这样一个案例,某客户的实例 mysqld 进程内存经常持续增加导致最终被 OOM killer。作为 DBA 肯定想知道有哪些原因可能会导致 OOM(内存溢出)。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
透明性:是指每一个数据库分布节点对用户的应用来说都是透明的,看不出是本地还是远程。
Tomcat的连接数主要受几个参数的影响:1. acceptCount:指定Tomcat接收请求的最大队列数,默认值为100。这是因为Tomcat的连接器(Connector)将接收到的请求放入队列进行处理,当队列满时新请求会被拒绝。将acceptCount的值增加可以加大链接请求队列的大小,接纳更多连接。2. maxConnections:指定最大连接数,默认值为10000。当Tomcat正在处理的连接达到这个值时,新的连接请求会被拒绝。增大这个值可以增加Tomcat的最大连接数。3. maxThreads:指定最大线程数,默认值为200。由于每个连接都需要一个线程来处理,当线程数达到maxThreads时新连接无法被处理,会被拒绝。增大maxThreads值也可以增加最终的连接数。所以,可以通过调整以上3个参数来加大Tomcat的连接数:1. 增大acceptCount值,扩大连接请求队列,避免连接请求被拒绝,如:
对一个系统而言,保持一个系统能够持续稳定地提供服务的能力而言显得尤为重要。我们常常谈用户体验,其实良好的用户体验不仅仅指的是用户交互以及系统的易用性,也包含了系统可持续提供服务的能力。作为质量交付团队,不仅仅需要考虑被测对象背后的业务价值和给用户带来商业上的赋能,也需要考虑提供业务背后的底层服务的计算能力,因为底层服务的稳定性才能够保障上层应用的产品业务特性,以及业务带来的商业价值。
存储的顺序和添加的顺序无关,没有下标如TreeSet,它是存储的顺序和添加的顺序无关,但其中的对象也进行了相应规范的排序。
一、什么是分布式架构 分布式系统(distributed system) 是建立在网络之上的软件系统。 内聚性:是指每一个数据库分布节点高度自治,有本地的数据库管理系统。 透明性:是指每一个数据库
什么是动态内容缓存? 浏览器向服务器发送请求后,服务器会根据浏览器的要求做相应的处理(如:数据库操作),然后将处理后的结果注入JSP页面生成HTML,最后将生成的HTML返回给浏览器显示。我们知道,数据库读取操作是非常耗时的,如果能将每次请求中的数据库处理时间去掉,那服务器的相应速度将会大幅提升。要实现这一点,我们就需要将常用的HTML页面事先生成好,当用户发出请求时,服务器只需从缓存中取出即可,无需再做数据库处理操作。 综上所述:事先生成HTML页面的技术称为动态内容缓存。 什么是“缓存命中率”? 缓存
功能大家都能实现,服务器性能优化可以提供用户体验,公司上个游戏是用C++写的pc端游,玩家多时服务器可能出现内存溢出的情况,现在做手游吸取经验做了不少优化
JVM运行过程中,程序不断的申请内存空间用于保存运行时数据,当程序申请的内存空间系统无法满足时,就会抛出内存溢出错误。内存溢出发生的区域以及相应的解决方案都不相同,下面我们逐一分析内存溢出类型及解决方案。
大家都知道如果一直浏览网站,内存没处理的话会出现内存溢出的情况。今天就讲一下图片中内存是如何进行管理的。
领取专属 10元无门槛券
手把手带您无忧上云