首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    河道水尺水位监测系统

    河道水尺水位监测系统基于python+opencv对河道湖泊水尺水位进行7*24小时全天候实时监测,当河道水尺水位监测系统监测到河道水位异常变化时,系统立即抓拍存档同步回传图片给后台监控平台,提醒后台工作人员及时处理异常情况,避免更大损失的发生。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。OpenCV-Python使用Numpy,这是一个高度优化的数据库操作库,具有MATLAB风格的语法。所有OpenCV数组结构都转换为Numpy数组。这也使得与使用Numpy的其他库(如SciPy和Matplotlib)集成更容易。

    01

    值班离岗智能识别监测系统

    值班离岗智能识别监测系统通过python+yolo网络模型视频分析技术,值班离岗智能识别监测系统能自动检测画面中人员的岗位状态(睡岗或者离岗),值班离岗智能识别监测系统一旦发现人员不在岗位的时间超出后台设置时间,立即抓拍存档提醒。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。Yolo模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。

    02

    智慧工地安全着装识别系统

    智慧工地安全着装识别系统通过python+opencv网络模型AI视频分析技术,智慧工地安全着装识别系统对现场物体的不安全状态以及人员的不安全行为(不按要求着装)进行自动实时分析。由于Python 较为简单,一般无法进行复杂的后端搭建,所以该语言通常用来进行一些简单的文本处理、数据处理等操作。按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。

    04

    人员玩手机离岗识别检测系统

    人员玩手机离岗识别检测系统通过python+yolov5网络模型识别算法技术,人员玩手机离岗识别检测系统可以对画面中人员睡岗离岗、玩手机打电话、脱岗睡岗情况进行全天候不间断进行识别检测报警提醒。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。

    02

    c++程序员必知必会的技术,推荐你们一份qt书单

    Qt是软件开发领域中非常著名的C++可视化开发平台。本书以Qt 5.11为平台,介绍Qt和QML编程及其应用开发。全书分为5个部分。第1部分为Qt基础,在上一版的基础上增加了Qt操作表格处理软件Excel数据和字处理软件Word数据的内容。第2部分为Qt综合实例,重新设计了电子商城系统、MyWord字处理软件、微信客户端程序。第3部分为Qt扩展应用OpenCV,首先配置OpenCV-3.4.3,然后介绍典型图片处理。第4部分为QML和Qt Quick及其应用,介绍了QML及Qt Quick相关内容,【综合实例】为多功能文档查看器。第5部分为附录,介绍了C++相关知识和Qt 5简单调试。本书提供配套的视频,分析典型案例,通过扫描二维码播放。为了方便读者上机练习,书中实例提供源代码,其编号为CH×××。源代码及其工程文件可从华信教育资源网(http://www.hxedu.com.cn)免费下载。本书既可作为Qt 的学习和参考用书,也可作为大学教材或Qt 5培训用书。

    00

    未佩戴安全带智能识别系统

    未佩戴安全带智能识别系统通过python+opencv网络模型识别分析技术,未佩戴安全带智能识别系统自动识别现场工地作业人员高空作业是否按要求佩戴安全带,未佩戴安全带智能识别系统不需人为干预自动抓拍告警同步提醒后台人员及时处理。OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,该程序库也可以使用英特尔公司的IPP进行加速处理。

    00

    劳保防护用品穿戴检测系统

    劳保防护用品穿戴检测系统通过python+Opencv深度学习技术,劳保防护用品穿戴检测系统对现场人员防护穿戴用品进行全天候检测,劳保防护用品穿戴检测系统检测到未按照要求进行穿戴,劳保防护用品穿戴检测系统立即对现场违规人员进行抓拍。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。

    04

    工人不戴安全帽自动检测系统

    工人不戴安全帽自动检测系统通过python+opencv深度学习网络模型,工人不戴安全帽自动检测系统对现场人员穿戴进行全天候不间断识别检测,工人不戴安全帽自动检测系统发现现场人员违规行为着装自动抓拍存档。Python是一门解释性脚本语言。解释性语言:解释型语言,是在运行的时候将程序翻译成机器语言;解释型语言的程序不需要在运行前编译,在运行程序的时候才翻译,专门的解释器负责在每个语句执行的时候解释程序代码,所以解释型语言每执行一次就要翻译一次,与之对应的还有编译性语言。OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++API和Python语言的最佳特性。

    05

    自动识别是否穿着工作服

    自动识别是否穿着工作服通过opencv+python网络模型AI视频分析技术,自动识别是否穿着工作服对作业区域现场人员穿戴进行7*24小时实时监测,自动识别是否穿着工作服利用最新的深度学习与大数据技术为安全生产保驾护航。OpenCV可以在不同的系统平台上使用,包括Windows,Linux,OS,X,Android和iOS。基于CUDA和OpenCL的高速GPU操作接口也在积极开发中。自从第一个预览版本于2000年公开以来,目前已更新至OpenCV4.5.3。OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++API和Python语言的最佳特性。完善的传统计算机视觉算法,涵盖主流的机器学习算法,同时添加了对深度学习的支持。

    02

    水面船舶识别检测系统

    水面船舶识别检测系统通过python+opencv网络模型计算机视觉技术,水面船舶识别检测算法对河道水面区域进行7*24小时实时监测,当监测到采砂船非法采砂船只时,自动抓拍违规船只存档并告警及时制止。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。

    02

    AI+明厨亮灶解决方案

    AI+明厨亮灶解决方案通过python+yolo网络模型分析算法,AI+明厨亮灶解决方案可接对后厨实现如口罩识别、厨师服穿戴、夜间老鼠监测、厨师帽识别、厨师玩手机打电话识别、抽烟识别等实时分析监测。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。

    02
    领券