根据战略顾问NewVantage在2021年对大数据和人工智能高管的调查,目前92%的组织正在继续增加对成为数据驱动型组织的投资,数据分析也给公司带来了更大的收益。麦肯锡全球研究所(McKinsey Global Institute)的结论是,通过数据分析,企业获得新客户的可能性高出23倍,留住现有客户的可能性高出六倍,使用数据洞察和分析时盈利的可能性高出19倍。
数据分析这个话题自从进入人们的视线以来,这个话题就成为人们茶余饭后的谈资,但是一千个人眼中就有一千个哈姆雷特,就意味着每个人对数据分析都有不一样的理解。
08年毕业,不知不觉的混进了电子商务行业,又不知不觉的做了三年数据分析,恰好又赶上了互联网电子商务行业发展最快的几年,也算是不错吧,毕竟感觉前途还是很光明的。三年来,可以说跟很多同事学到了不少东西,需
08年毕业,不知不觉的混进了电子商务行业,又不知不觉的做了三年数据分析,恰好又赶上了互联网电子商务行业发展最快的几年,也算是不错吧,毕竟感觉前途还是很光明的。三年来,可以说跟很多同事学到了不少东西,需要感谢的人很多,他们无私的教给了我很多东西。 就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员
就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员流失;利用会员的购买数据,挖掘会员的潜在需求,提供销售,扩大影响力等等。 最开始进公司的时候是在运营部,主要是负责运营报表的数据,当时的系统还很差,提取数据很困难,做报表也很难,都是东拼西凑一些数据,然后做成PPT,记得当时主要的数据就是销
SaaS模式一经推出,凭借自身的高性价比、低维护成本,无需软硬件维护、无需运维等明晃晃的优点,得到了爆发式的增长,甚至全面改变了软件的开发模式。各位老总的问候语,不知从什么时候开始,都变成了:“你上云
领导说:“你去建材市场帮我买些配件。”你顶着烈日跑遍大小市场,但领导问你:“为何选这家?”你却答不上来。
很多小伙伴的企业已经引入了 Power BI,想知道 Power BI 整个架构是怎样的,也方便给老板做介绍。
近几年美国公布的相关数据分析中,薪酬最高、最吃香的行业中便有IT业。IT产业日益崛起,技术也被越来越多的人掌握,而往往最被看重的技能是:数据分析、风险管理、机器人技术、信息安全、网络技术。数据分析排名
“数据分析”是一个含义颇为宽泛的概念,并且,在这个数据化的时代,这个概念几乎是无处不在的。为了保证内容的有效性,在这里仅提供我了解的一些方面。 我接触的数据分析,主要是围绕互联网产品展开的。从数据采集前的规划,到采集过程(交互逻辑设计等),到回收数据的整理(机器层面和人工层面),与业务相联系的数据汇总,到后期的报告呈现(项目成果呈现),都有“数据分析”涉及。 对单一产品来讲,数据分析(非挖掘)的集中体现,往往在运营层面。一方面是日常数据的跟踪,另一方面是重大活动、市场策略、新版本上市时的数据监测。
随着市场环境的复杂化,在数据分析中,能否提供更具商业洞察力的数据信息正在成为考核业务员能力的重要参考指标。加强以下两大块能力至关重要:
随着数字化的发展,实证单位和企业需要处理分析的数据量呈指数级增长,传统的数据分析工具已不能满足一些企业的需求,越来越多的企业转而寻求BI工具的帮助。现在市面上有非常多的BI工具,质量也参差不齐,笔者特此盘点了现在市面上6款常见的BI工具,以供有需要的朋友参考。(排名不分先后)
从这张大数据的整体架构图上看来,大数据的核心层应该是:数据采集层、数据存储与分析层、数据共享层、数据应用层,可能叫法有所不同,本质上的角色都大同小异。
“大数据”时代,数据分析岗位需求逐步增多,薪资也从最初的月薪1W到月薪5W。 不过从招聘网站上可以看出,高薪行业对数据分析能力要求也越来越严格,尤其是字节、阿里等大厂。 15 年,会用个 Excel,会查数据库就能找到很好的工作; 17 年,你得会做BI可视化,能给老板做漂亮的动态报表,同时还得精通Python; 到了 2022 年的今天,除了 Excel 、 Python 、 BI 这些基础的工具,你还要懂统计、建模、数据分析、业务增长等…… 为此,我从网站上搜了不少学习资料和视频,但看完只能
把你需要花大量时间和实践才能掌握的方法和知识,我加工后用通俗的语言分享给你,你就可以最短的时间掌握这些知识。
点击关注公众号,Java干货及时送达 我们先来看看这张图,这是某公司使用的大数据平台架构图,大部分公司应该都差不多: 从这张大数据的整体架构图上看来,大数据的核心层应该是:数据采集层、数据存储与分析层、数据共享层、数据应用层,可能叫法有所不同,本质上的角色都大同小异。 所以我下面就按这张架构图上的线索,慢慢来剖析一下,大数据的核心技术都包括什么。 一、数据采集 数据采集的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。 数据源的种类比较多: 网站日志: 作为互联网行业,
数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且可
1、数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,
1数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并
1数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且
1、数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义
数据可视化是数据分析中比较重要的一个技能,是为了将数据分析的结果表达的更形象化、专业化且突出重点。
Growth Hacking这个词在过去一两年开始迅速从硅谷传播到国内,也诞生了一系列专注于企业数据分析业务的明星初创公司,如GrowingIO,神策数据,诸葛IO等。Growth Hacking简单的来说就是用数据驱动的方式来指导产品的迭代改进,以实现用户的快速增长,可以看看上面几家数据分析公司披露的客户就知道它有多流行了: GrowingIO客户:有赞,豆瓣,36Kr等 神策数据客户:秒拍,AcFun,爱鲜蜂,pp租车等 诸葛IO客户:Enjoy,罗辑思维等 我司的一个主要产品是面向中小诊所的运营S
在当今数据驱动的世界中,数据分析和可视化成为了业务决策的重要工具。Power BI作为一款强大的商业智能工具,能够帮助用户从原始数据中提取有价值的信息,并通过丰富的可视化展示方式,帮助用户更好地理解数据背后的故事。本文将带您走进Power BI的世界,一步步进行数据分析与可视化的实战操作,为您展示其魅力与实用性。
数据分析和数据挖掘是数据从业者非常关注的两个岗位。这两个岗位到底有哪些区别?常听人说数据分析偏业务、偏前台,而数据挖掘偏技术,偏后台。所以要早点选定一个方向进行深耕才行?
看了很多数据湖的介绍文章,笔者认为数据胡和我们常说的ODS数据很类似,也就是原始数据的保存区域,存储来自各业务系统(消息队列)的原始数据。比如电商网站的访问日志(埋点的时候是以JSON存储),物联网终端设备实时发送的数据等原始数据直接存储在数据仓库的ODS层。
数据分析师虽然是很多互联网公司都设立的一个职位,但不同公司对这一职位的定位不同。即使是统一公司,在不同的团队,数据分析师的职责,作用和地位也可能不一样。本文从笔者自己的实际经历出发,总结一下数据分析师工作的内容,要求,工具,技能等多个方面。由于经历尚欠,文章内容难免疏漏,请多多包涵。也欢迎交流。
今日洞见 文章作者及图片来自ThoughtWorks:熊节。 本文所有内容,包括文字、图片和音视频资料,版权均属ThoughtWorks公司所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发布/发表。已经本网协议授权的媒体、网站,在使用时必须注明"内容来源:ThoughtWorks洞见",并指定原文链接,违者本网将依法追究责任。 大数据是当下最热门的IT主题之一。据麦肯锡的分析,大数据能使信息更透明、能让决策者获得更精确翔实的绩效信息、能针对客户群体提供更准确的定制、能提升组织
报告正文: 大家好,我是来自猎聘网的单艺,很高兴今天下午能够有机会跟大家聊一聊我们做数据分析在这个大数据时代会面临的哪些机会和挑战。我演讲的主题是数据分析师的十大机遇和挑战。主要是工作这几年自己接触的个人感受,可能会偏虚一点,偏方法论述一些,希望对大家有一点启发。 首先介绍一下我自己的背景,数据分析的背景比较杂一点,有的是从工程上过来,有的是从数学统计,有的是从物理、心理学、社会学,他们都能做的很好。我自己是偏数据挖掘,也有比较多的工程经验,我是这么一个背景。我自己现在在猎聘负责所有的跟数据有关的事情,包括
分享一下自己工作5年后,成功拿到京东offer,从传统行业转到数据分析的经历,希望能对同学们有所帮助。
需手动埋点、数据采集不全、核心业务数据无法保留、工程量繁重、可视化图表制作耗时漫长、业务人员无法自主按需分析、无法对用户行为进行实时深层分析,数据分析师产品常见的这七大痛点或许将成为历史。 12月8日,商业数据分析公司GrowingIO发布首款实时商业数据分析产品GrowingIO V1.0,该平台同时适用于Web页面、HTML5页面以及iOS/Android客户端的数据分析。 GrowingIO V1.0首次实现了无埋点数据采集、全面收集实时数据、一键出图、实时数据分析等功能,解开了数据的“镣铐”,大大提
本文字数为1151字,阅读全文约需5分钟 本文为《数据蒋堂》第二期,为你解释为什么非结构化数据分析是忽悠。 大数据概念兴起的同时也带热了非结构化数据分析。传说一个企业中80%的数据都是非结构化数据,如果按占据空间来算,这个比例大体不假,毕竟音视频这类数据真地很大。有这么大的数据量,需要进行分析是很自然的事了,而要分析当然就要有相应的技术手段了。 那为什么说非结构化数据分析技术是忽悠呢? 不存在通用的非结构化数据计算技术 非结构化数据五花八门,有声音图像、文本网页、办公文档、设备日志、....;每类数
众所周知,精通Excel不叫精通数据分析,会讲述啤酒与尿不湿的案例并不代表你能洞悉数据,PPT做得漂亮也并不能为你的数据分析能力加分……我们做数据分析是为了能以量化的方式来分析业务问题,并得出结论。其中有两个重点词语:量化和业务。
一套完整的BI报表应该至少具备以下四个条件: 条件一:能够批量处理有一定规模的数据; 条件二:能够保证数据的时效性及准确性; 条件三:能够将实际业务中所涉及的所有相关数据整合到一起,搭建统一的多维数据
相信很多数据分析师的脑海中都无数次冒出过这个念头:出去开一个数据分析公司吧,喏,就像他们: 房地产数据分析师 · 张先生:我要创业!开一家数据分析的公司,什么万科、万达、万通、万维网....都是我的客户!喂,什么?哦不好意思我不买房,等一下,那个...请问您需要数据分析吗?我们专注房地产数据分析,聚类分析、回归分析、决策...喂?喂? 零售业数据分析师 · 小王:老子不干了!老子要自己接活做,给楼下小卖部做数据分析! 互联网数据分析师 · 强强:我辞职了,开了一家公司,我们公司做流量分析、推荐系统,构建
数据分析/挖掘工作的疑惑 本人在读硕士一名,研二,理工科,所作工作于这两方面无关。但是,最近对这个方向特别感兴趣,真的很想从事这方面的工作。目前,正在自学中,以及找相关实习。但是,我看了一些东西之后,有些不解。问题如下: 1 数据挖掘与数据分析在实际工作中真的有很大不同甚至是区别吗?我知道一些定义,比如数据分析偏重于统计,而数据挖掘的工作是分类,聚类,是信息的提炼,但是实际工作中是不是往往两方面都在做?分不清,分不开。 2 有些单位(互联网、软件)找数据方面的人会要求编程比如python,r,hadoo
随着各行各业企业服务和产品越来越丰富多样,市场竞争也趋于白热化,想要吸引并留存用户,其难度和成本也在不断攀升,企业为了盈利和生存,需要更加严格地控制成本和预算,提升运营效率。
搜索:百度,网站的站内搜索,IT系统的检索 数据分析:电商网站,最近7天牙膏这种商品销量排名前10的商家有哪些;新闻网站,最近1个月访问量排名前3
这是国外数据科学学习平台DataCamp成员写的一篇图文《8步成为数据科学家》。我们具体来看下有哪些学习内容和学习资源。
本文为CDA金牌讲师李奇原创,转载请在本平台申请授权 随着大数据时代的到来,企业管理者对数据价值的重视度越来越高,他们渴望从企业内外部数据中获得更多的信息财富,并以此为依据,帮助自己做出正确的战略决策。在此种大环境下,缺乏洞察力的传统业务报表已经开始无法满足复杂市场环境中的企业决策需求,在很多企业中,“能否基于业务分析提供更具商业洞察力的数据信息”正在逐步取代“能否准确、及时地提供业务报表”成为考核业务人员能力的重要参考指标。为了能够提供更具洞察力的信息,需要业务人员强化以下两类能力: 强化所从事业务工作中
腾讯云 BI 是一款商业智能解决方案,提供数据接入、分析、可视化、门户搭建和权限管理等全流程服务。它支持敏捷自助设计,简化报表制作,并通过企业微信等渠道实现协作。产品分为个人版、基础版、专业版和私有化版,满足不同规模企业的需求,从个人学习到大型企业数字化转型,提供数据驱动的决策支持。
1、如何做好数据分析? 分析师成长是通过“干”、"思"、“熬”出来的。干:多做。哪些是临时需求。你要做各种各样的分析;思:你在边干的过程中,要边思考,边总结,只有这种你才能沉淀。熬:通过时间的积累,你
谢谢主持人,谢教授、各位专家,大家好! 现在我给大家介绍一下数据分析人才的知识结构,事实上这两天的论坛,这两天的演讲,要做数据分析的人他应该具备哪一方面的知识和能力,介绍这方面的专家已经很多了,我把这几天讲的综合起来。 到目前具备数据分析能力的人相当缺乏,这是我从另外一个报道里面统计的,据麦肯锡预估全美需要14到19万名具有专业能力的工作者。数据挖掘结束以后,他如何通过数据挖掘的结果来进行营销和风险控制,这方面的人缺口更多。根据全球数据科学调查报告,显示数据报告性的增长,但是分析增长增长的速度却没有改善,速
大家普遍的痛点,都觉得数据分析的前80%的工作都花费在了数据整理上了,其中一个直接的原因就是,几乎所有人,都在加班加点,努力为他人制造这个麻烦。虽然出发点是为了完成自己的报告,想把数据呈现的更加美观和漂亮,再漂亮些,或者基于老板们的要求,把最后的报告整理成老板们希望看到的样子。而所有这一切,最后都成为你想要抱怨的对象。
关于作者:我是水大人,资深潜水员,一个基于开发、面向分析、走向全栈的饱经摧残的数据新手,爱折腾不爱玩,爱总结爱思考的老兵,错了改改了又错的惯犯。
导读:数据分析在运营工作中无处不在,无论是活动复盘、专题报告、项目优化,还是求职面试,数据分析都有一席之地。对于数据分析,我发现很多运营都有这样一些困惑: 不知道从哪里获取数据;不知道用什么样的工具;不清楚分析的方法论和框架;大部分的数据分析流于形式;其实,数据分析并没有大家想象的那么难!接触了很多数据从业者,总结了这篇文章,希望对有志于学习数据分析的运营同学有所帮助。 一、概念:数据和数据分析 其实大家一直都在接触数据和数据分析,但是对于两者具体的定义又很难说清楚。我曾经做过一个调查,问一些运营同学,下
领取专属 10元无门槛券
手把手带您无忧上云