光学字符识别OCR技术(Optical Character Recognition)是指从图像中自动提取文字信息的技术。这项技术横跨了人工智能里的两大领域:CV(计算机视觉)和NLP(自然语言处理),综合使用了这两大领域中的很多技术成果。
OCR(光学字符识别)是是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。目前,这项技术在拍照搜题、拍照翻译等应用中得到广泛使用。
今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。
随着人工智能的热度上升,图像识别这一细分领域也渐渐被人们所关注。在很多公司的业务中,有很多需要对图片进行识别的需求。为了帮助业务实现对这些图片、文档的识别和结构化,业界进行了一系列的实践和探索,最终确定了一些可行的方法。实践过程中,可能遇到过一系列问题和难点。本次直播分享,我们将结合目前的业务需求,说说爱奇艺在探索中遇到的痛点和难点以及识别技术中的一些细节。
Dev Club 是一个交流移动开发技术,结交朋友,扩展人脉的社群,成员都是经过审核的移动开发工程师。每周都会举行嘉宾分享,话题讨论等活动。 本期,我们邀请了 腾讯 TEG 技术工程师“文亚飞”,为大家分享《深度学习在OCR中的应用》。 下面是分享实录整理: ---- 大家好,我是文亚飞,来自腾讯TEG,目前负责图像识别相关的工作。OCR(光学字符识别)旨在从图片中检测和识别文字信息,本次分享将介绍我们在OCR技术研发过程中的一些方法和经验总结。 一,OCR背景及基本框架介绍 OCR技术从上世纪60年代就开
最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解。所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解。
在集群中,节点间通过心跳来了解彼此的健康状态,以确保各节点协调工作。假设只有“心跳”出现问题,但各个节点还在正常运行,这时,每个节点都认为其它的节点宕机了,自己才是整个集群环境中的“唯一健在者”,自己应该获得整个集群的“控制权”。在集群环境中,存储设备都是共享的,这就意味着数据灾难。简单点说,就是如果由于私有网络硬件或软件的故障,导致集群节点间的私有网络在一定时间内无法进行正常的通信,这种现像称为脑裂。在发生脑裂情况后,集群的某些节点间的网络心跳丢失,但磁盘心跳依然正常,集群根据投票算法(Quorum Algorithm)将不正确的节点踢出集群。磁盘心跳的主要目的是当集群发生脑裂时可以帮助指定脑裂的解决方案。
机器之心报道 机器之心编辑部 这个文本 OCR 小工具,能让你「所截即所得」。 在我们办公时,是不是经常遇到图片内容转文字的需求? 你是用什么工具解决的呢?是手机自带拍照转文字功能?还是使用 QQ 里面的工具? 今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。 项目链接:https://github.com/ianzhao05/textshot 使用方法 运行 text
cnocr是用来做中文OCR的Python 3包。cnocr自带了训练好的识别模型,安装后即可直接使用。
今天分享的主要是OCR的部分。分享腾讯云在OCR上做的一些工作,以及腾讯云目前在云上面开放的OCR的一些服务。OCR简单来说就是让机器能看懂写的文字。我们手写的文字比较复杂,什么样子的都有。印刷的文字稍微简单一点,但也同样具有复杂性。今天主要讲的就是这种复杂性,这种服务在日常生活或者工程中遇到不同情况所产生如何处理这些复杂性的能力。
OCR 是人工智能里面非常重要的基础能力之一。腾讯云人工智能产品总监王磊,结合物流场景解读了OCR技术。“OCR文本识别能够优化物流行业流程,解放人力降低成本。” [1503556556876_5635_1503556557294.jpg] 王磊介绍,OCR文本识别存在三大挑战。其一是文本是由多个文字拼接组成,没有明显边界,文本框内除了笔画,其余部分均是背景,给文本识别特征提取带来难度;其二是文本是由若干汉字、英文或标点符号混合在一起,长度变化大,由于网络感知野受限,定位BOXES本身困难;其三是如果BO
同时在本微信公众号中,回复“SIGAI”+日期,如“SIGAI0515”,即可获取本期文章的全文下载地址(仅供个人学习使用,未经允许,不得用于商业目的)。
本文介绍了腾讯数平精准推荐团队的OCR识别算法,包括识别算法的演进之路以及4个代表性方法。
导 读 OCR方向的工程师,之前一定听说过PaddleOCR这个项目, 累计Star数量已超过20000+, 频频登上GitHub Trending和Paperswithcode 日榜月榜第一, 在Medium与Papers with Code 联合评选的《Top Trending Libraries of 2021》,从百万量级项目中脱颖而出,荣登Top10! 在《2021中国开源年度报告》中被评为活跃度Top5! 称它为 OCR方向目前最火的repo绝对不为过。 PaddleOCR影响力 PP-OC
通用文字 OCR 识别 API 是一种功能强大的服务,可用于多场景、多语种的整图文字检测和识别,通过将OCR技术应用于学校环境,可以实现教育资源的数字化和学习过程的自动化。
OCR是一项科技革新,通过自动化大幅减少人工录入的过程,帮助用户从图像或扫描文档中提取文字,并将这些文字转换为计算机可读格式。这一功能在许多需要进一步处理数据的场景中,如身份验证、费用管理、自动报销、业务办理等都显得尤为实用。现如今,OCR解决方案会结合AI(人工智能)和ML(机器学习)技术,以自动化处理过程并提升数据提取的准确性。本文将介绍该技术的前世今生,一览该技术的阶段性发展:传统OCR技术统治的过去,深度学习OCR技术闪光的现在,预训练OCR大模型呼之欲出的未来!
驾驶证识别 OCR 技术的发展使得驾驶证信息的自动化处理成为可能。通过使用 OCR 算法和 API 接入,我们能够轻松地识别驾驶证上的各个字段,如证号、姓名、性别、国籍、住址、出生日期、初次领证日期、准驾车型、有效期限、发证机构等。
OCR方向的工程师,之前一定听说过PaddleOCR这个项目,其主要推荐的PP-OCR算法更是被国内外企业开发者广泛应用,短短半年时间,累计Star数量已超过15k,频频登上Github Trending和Paperswithcode 日榜月榜第一,在《Github 2020数字洞察报告》中被评为中国Github Top20活跃项目,称它为 OCR方向目前最火的repo绝对不为过。
cnocr主要针对的是排版简单的印刷体文字图片,如截图图片,扫描件等。cnocr目前内置的文字检测和分行模块无法处理复杂的文字排版定位。如果要用于场景文字图片的识别,需要结合其他的场景文字检测引擎使用。
最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解。所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解。 什么是OCR? OCR英文全称是Optical Character Recognition,中文叫做光学字符识别。它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。文字识别是计算机视觉研究领域的分支之一,而且这个课题已经是比较成熟了,并且在商业中已经有很多落地项目了。比如汉
机器之心发布 机器之心编辑部 PaddleOCR 可称得上 OCR 方向目前最火的 repo。 OCR 方向的工程师,之前一定听说过 PaddleOCR 这个项目,累计 Star 数量已超过 20000+,频频登上 GitHub Trending 和 Paperswithcode 日榜月榜第一,在 Medium 与 Papers with Code 联合评选的《Top Trending Libraries of 2021》,从百万量级项目中脱颖而出,荣登 Top10!在《2021 中国开源年度报告》中被评
在全球文字识别(OCR)领域顶级盛会ICDAR 2023上,腾讯OCR团队基于自研算法,斩获四项冠军,这是继2017年、2019年、2021年以来,连续四届参会同时创造佳绩,共获得18项官方认证冠军,展示了腾讯OCR技术在全球的一流水平。
首先和大家演示一下实现的效果,我们的最终目标是基于一张图片,通过技术的手段自动提取图片的信息,并展示到文档中,提高文档编写的效率。
由于最近在接触一些OCR的工作,所以本期《晓说AI》和大家分享一下我的一些总结,先从基本的概念讲起。如有错误,还请指正,谢你3千遍。如有疑问,欢迎留言,我会第一时间答复。
https://github.com/PaddlePaddle/PaddleOCR
近年来,移动互联、大数据等新技术飞速发展,倒逼传统行业向智能化、移动化的方向转型。随着运营集约化、数字化的逐渐铺开,尤其是以OCR识别、数据挖掘等为代表的人工智能技术逐渐深入业务场景,为用户带来持续的经济效益和品牌效应。图书情报领域作为提升公共服务的一个窗口,面临着新技术带来的冲击,必须加强管理创新,积极打造智能化的图书情报服务平台,满足读者的个性化需求。无论是高校图书馆还是公共图书馆,都需加强人工智能基础能力的建设,并与图书馆内部的信息化系统打通,优化图书馆传统的服务模式,提升读者的借阅体验。
百度 AI 实战营收官战(成都站),宣告百度 OCR 免费策略再次升级。百度通用文字识别服务的免费使用次数提升100倍,从每天500次提升至每天50000次;通用文字识别高精度版的免费使用次数提升10倍,从每天50次提升至每天500次。
在过去的数年中,腾讯数平精准推荐(Tencent-DPPR)团队一直致力于实时精准推荐、海量大数据分析及挖掘等领域的技术研发与落地。特别是在广告推荐领域,团队自研的基于深度在线点击率预估算法及全流程实时推荐系统,持续多年在该领域取得显著成绩。而在用户意图和广告理解上,借助于广告图片中的文本识别以及物体识别等技术手段,可以更加有效的加深对广告创意、用户偏好等方面的理解,从而更好的服务于广告推荐业务。 OCR(Optical Character Recognition, 光学字符识别)是指对输入图像进行分析识
文字是信息的重要载体之一。通过书写、印刷、电子设备等方式,文字可以被记录下来并传递给他人。文字也是语言的重要组成部分,人们可以通过文字来表达自己的思想、感情和意图。在信息化时代,文字仍然是最基本、最重要的信息传递方式之一,也有着其不可替代的优势,如:简短明了、方便快捷、易于编辑、可归纳整理等。
图像版PDF文件里面都是图片,要先通过OCR技术识别出文本,然后才能进行进一步处理编辑。下面是3个免费的PDF文件OCR识别软件工具:
前几天给大家推送过如何快速在安卓上跑通OCR应用、如何将AI模型集成到安卓应用中,本章将对部署过程中的关键代码进行解读。
经过多年累计后,该项目 GitHub Star 数量已超过 20000+,并频频登上 GitHub Trending 和 Paperswithcode 日榜月榜第一。
在当今数字化时代,文字识别技术(OCR)已成为我们日常生活和工作中的重要工具。 OCR可以将图像或纸质文件中的文字转化为可编辑和可搜索的数字格式,为我们提供了便捷和高效的方式来处理大量的文本信息。
作者:石文华 编辑:祝鑫泉 前 言 文章来源:https://hackernoon.com/latest-deep-learning-ocr-with-ker
光学字符识别(OCR)技术已经得到了广泛应用。比如发票上用来识别关键字样,搜题 App 用来识别书本上的试题。
今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具 ——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。
本教程将介绍如何使用 OpenCV OCR。我们将使用 OpenCV、Python 和 Tesseract 执行文本检测和文本识别。
点击上方蓝色“程序猿DD”,选择“设为星标” 回复“资源”获取独家整理的学习资料! 在我们办公时,是不是经常遇到图片内容转文字的需求? 你是用什么工具解决的呢?是手机自带拍照转文字功能?还是使用 QQ 里面的工具? 今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具 ——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。 项目链接:https://github.com/ianzhao05/textshot 使用方法 运行
n全新发布数据合成工具Style-Text:可以批量合成大量与目标场景类似的图像,在多个场景验证,效果均提升15%以上。
导读|腾讯云OCR团队在产品性能的长期优化实践中,结合客户使用场景及产品架构对服务耗时问题进行了深入剖析和优化。本文作者——腾讯研发工程师彭碧发详细介绍了OCR团队在耗时优化中的思路和方法(如工程优化、模型优化、TIACC加速等),通过引入TSA算法使用TI-ACC减少模型的识别耗时,结合客户使用场景优化编解码逻辑、对关键节点的日志分流以及与客户所在地就近部署持续降低传输耗时,克服OCR耗时优化面临的环节多、时间短甚至成本有限的问题,最终实现了OCR产品平均耗时从1815ms降低到824ms。希望大
摘要:在日常生活工作中,我们难免会遇到一些问题,比如自己辛辛苦苦写完的资料,好不容易打印出来却发现源文件丢了;收集了一些名片,却要一个一个地录入信息,很麻烦;快递公司的业务越来越好,但每天需要花费很多时间登记录入运单,效率非常的低。
光学字符识别(Optical Character Recognition, OCR)是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。亦即将图像中的文字进行识别,并以文本的形式返回。
注:此篇内容主要是综合整理了光学字符识别 和OCR技术系列之一】字符识别技术总览,详情见文末参考文献
基于图像分类,在VGG16模型的基础上,训练0、90、180、270度检测的分类模型. 详细代码参考angle/predict.py文件,训练图片8000张,准确率88.23%
深度学习在OCR领域的成功应用需要大量数据,数平精准推荐团队利用图像增强,语义理解,生成对抗网络等技术生成高质足量的数据,为算法模型提供燃料,帮助OCR技术服务在多种业务场景中快速迭代,提升效果。
OCR,或光学字符识别,是最早的计算机视觉任务之一,因为在某些方面它不需要用到深度学习。因此,早在2012年深度学习热潮之前,OCR就有了各种不同的应用,有些甚至可以追溯到1914年 。
领取专属 10元无门槛券
手把手带您无忧上云