电网调度综合自动化系统SCADA功能为调度员、集控员提供了各个变电站的实时数据及信息,并可以使他们方便地进行事故重演或历史数据和信息查询。在系统设计时,需要考虑更多的是网络结构、通讯规约转换、数据存储方式介质和满足SCADA功能的几项性能指标要求,而没有考虑系统全网时钟不同步会造成什么影响。由于系统全网时钟不同步会造成一些较为特殊的故障,如数据和信息丢失、SOE事件信息逻辑混乱、某些工作站死机甚至系统瘫痪,因而为了消除时钟不同步的影响,我们有必要分析时钟同步在系统中的作用及各种实现方式。
电力系统是时间相关系统,无论电压、电流、相角、功角变化,都是基于时间轴的波形。近年来,超临界、超超临界机组相继并网运行,大区域电网互联,特高压输电技术得到发展。电网安全稳定运行对电力自动化设备提出了新的要求,特别是对时间同步,要求继电保护装置、自动化装置、安全稳定控制系统、能量管理系统和生产信息管理系统等基于统一的时间基准运行,以满足同步采样、系统稳定性判别、线路故障定位、故障录波、故障分析与事故反演时间一致性要求。确保线路故障测距、相量和功角动态监测、机组和电网参数校验的准确性,以及电网事故分析和稳定控制水平,提高运行效率及其可靠性。未来数字电力技术的推广应用,对时间同步的要求会更高。
标准时间同步服务器接收卫星时间信号,前面板显示年月日时分秒、收星颗数、系统工作状态,电源状态等信息,将标准UTC时间信息通过网络传输,为网络设备提供精确、标准、安全、可靠和多功能的ntp校时服务,是一款性价比极高的网络时间同步服务器。
近几年来,随着电力自动化水平的提高,在电力中计算机监控系统、微机保护装置、微机故障录波装置以及各类数据管理机得到了广泛的应用,而这些自动装置的配合工作需要有一个精确统一的时间。当电力系统发生故障时,既可实现全站各系统在统一时间基准下的运行监控和事故后故障分析,也可以通过各保护动作、开关分合的先后顺序及准确时间来分析事故的原因及过程。随着电网的日益复杂、装机容量的提高和电网的扩大,提供标准时间的时钟基准成为电厂、变电站乃至整个电力系统的迫切需要,时钟的统一是保证电力系统安全运行,提高运行水平的一个重要措施,是综自变电站自动化系统的最基本要求之一。
近几年来,随着电厂自动化水平的提高,在电厂中计算机监控系统、微机保护装置、微机故障录波装置以及各类数据管理机得到了广泛的应用,而这些自动装置的配合工作需要有一个精确统一的时间。当电力系统发生故障时,既可实现全站各系统在统一时间基准下的运行监控和事故后故障分析,也可以通过各保护动作、开关分合的先后顺序及准确时间来分析事故的原因及过程。随着电网的日益复杂、装机容量的提高和电网的扩大,提供标准时间的时钟基准成为电厂、变电站乃至整个电力系统的迫切需要,时钟的统一是保证电力系统安全运行,提高运行水平的一个重要措施,是综自变电站自动化系统的最基本要求之一。
随着对IEC61850 标准研究的不断深入,国内外学者提出基于IEC61850 通信标准体系建设数字化变电站的发展思路。数字化变电站与常规变电站的显著区别在于过程层传统的电流/ 电压互感器、断路器将被电子式电流/ 电压互感器、智能断路器取代。在数字化变电站中数据信息的共享程度和数据的实时性将得到大幅度提高。IEC61850 标准对智能电子设备的时钟精度功能要求划分为5 个等级(T1-T5 ),其中用于计量的T5 等级精度达到1us 。
随着对IEC 61850标准研究的不断深入,数字化变电站与常规变电站的显著区别在于过程层传统的电流/电压互感器、断路器将被电子式电流/电压互感器、智能断路器取代。在数字化变电站中数据信息的共享程度和数据的实时性将得到大幅度提高。IEC61850标准对智能电子设备的时钟精度功能要求划分为5个等级(T1-T5),其中用于计量的T5等级精度达到1us。
随着对IEC 61850标准研究的不断深入,国内外学者提出基于IEC61850通信标准体系建设数字化变电站的发展思路。数字化变电站与常规变电站的显著区别在于过程层传统的电流/电压互感器、断路器将被电子式电流/电压互感器、智能断路器取代。在数字化变电站中数据信息的共享程度和数据的实时性将得到大幅度提高。IEC61850标准对智能电子设备的时钟精度功能要求划分为5个等级(T1-T5),其中用于计量的T5等级精度达到1us。
子母钟系统的建成,人们真正得益的是子钟等终端所提供的标准时间信息,而母钟是为子钟等终端提供对时服务的。因此,系统的设计,应该是由子钟的数量及分布范围来决定母钟的配置,而非由母钟的配置影响系统的整体设计。
由于历史的原因,我国目前的电力行业的时间同步系统的时钟源大都采用米国GPS系统做为主时钟源。 目前,GPS是米国军方控制的军民共用的系统,对全世界开放。我国目前使用的GPS属于免费接收的米国信号。尽管如此,但是米国人并不承诺保证你的使用。这样就带来一个安全问题, 如电力系统以米国的GPS作为主时钟源,这便存在着重大的安全隐患,一旦发生战争等紧急事态,米国关闭或调整GPS信号,将给我们的电力生产带来很大影响。
在我们高速发展的科技设备中,其中有文件处理服务器、邮件服务器、网络终端设备、互联网等以及其它无数网络设备的背后,存在一个基本的信任就是:“准确的时间!”这时一台GPS网络对时服务器尤其显得重要!
时间同步技术在所有网络应用中都是至关重要的,从互联网到工业,金融和科学应用,莫不如是,因此催生了包括NTP(网络时间协议)与1588v2 PTP(精确时间协议)等用于互联设备授时协议、以及通过GNSS接收机进行时间同步的方法。如今,随着物联网技术的不断发展,授时技术正在互联网、卫星定位、高频交易和移动电信网络中发挥着中央赋能的作用,进一步拓展物联网生态系统,为大量新兴商业提供发展机会。
随着计算机和网络通信技术的飞速发展,各行业自动化系统数字化、网络化的时代已经到来。这一方面为各控制和信息系统之间的数据交换、分析和应用提供了更好的平台、另一方面对各种实时和历史数据时间标签的准确性也提出了更高的要求、使用价格并不昂贵的GPS时钟来统一各种系统的时钟,已是目前各大系统设计中采用的标准做法。如大型的机组分散控制系统(DCS)、辅助系统可编程控制器(PLC)、厂级监控信息系统(SIS)、厂站的管理信息系统(MIS)等的主时钟通过合适的GPS时钟信号接口,得到标准的TOD(年月日时分秒)时间,然后按各自的时钟同步机制,将系统内的从时钟偏差限定在足够小的范围内,从而达到整个系统的时钟同步。
时间敏感网络(TSN:Time Sensitive Networking)是IEEE802.1工作组中的TSN任务组开发的一套协议标准。该标准定义了以太网数据传输的时间敏感机制,为标准以太网增加了确定性和可靠性,以确保以太网能够为关键数据的传输提供稳定一致的服务级别。
在无线网络世界中,有802.11b、802.11g、802.11n、802.11ac等技术,最近,Wi-Fi 6开始慢慢热了起来,新一代无线网络网络仍然是与以太网兼容的 IEEE 802.11 协议的一部分,被称为 802.11ax,现在越来越多的无线路由器、笔记本开始支持Wi-Fi 6,那么Wi-Fi 6到底有多快呢?今天来测试一下。
电力系统卫星时钟同步(北斗授时设备)到底有多重要?接下来我们详解下,希望对大家有所帮助。
在现代社会中,时间的精确度对于各种行业和领域都至关重要。为了确保时间的准确性,对时装置运而生。
随着互联网的发展和数字内容的丰富,电影推荐系统已成为提高用户体验和平台运营效率的关键技术。电影推荐系统利用用户的历史行为数据、电影的属性信息以及用户的反馈,向用户推荐他们可能感兴趣的电影。这种系统广泛应用于流媒体平台、在线电影网站和社交网络等。
在现代电网中,统一的时间系统对于电力系统的故障分析、监视控制及运行管理具有重要意义。变电站的对时是指站内的保护、测量、监控设备为了统一时间的需要,采用相应的对时方法,实现与标准时钟源时间保护同步的过程,从而确保电力系统实时数据采集的一致性,为系统故障分析和处理提供了准确的时间依据,提高电网运行效率和可靠性,提高电网事故分析和稳定控制的水平,提高线路故障测距、相量和功角动态监测、机组和电网参数校验的准确性。
GPS北斗卫星同步时钟在金融、国防、电力、通信等系统的诸多领域中得到了广泛的应用,而卫星同步时钟的利用方式也不尽相同。主要包括IRIG-B码、网络时间协议NTP、IEEE1588ptp等同步方式。本文将同步时钟常用授时方式进行汇总。
答:将天线白色蘑菇头放在室外,天线馈线末端 BNC 头连接至网络时钟服务器产品背板天线接口处,开机,过几秒液晶屏显示收星颗数,当显示大于 0 的数值时,就表明天线能够收到星, 能够正常放心使用。
随着科学技术的发展工业信息化高速迈进许多设备对于高精度时间系统应用日益广泛,高稳定时钟系统显得尤为重要,在某些系统设备从而需要网络校时服务器进行校正,网络时间服务器可接收北斗卫星标准时间为基准同步时间。
本文引用了沈剑《如何保证IM实时消息的“时序性”与“一致性”?》一文的图片和内容(由于太懒,图没重新画),原文链接在文末。
分布式系统中,很多业务场景都需要考虑消息投递的时序,例如: (1)单聊消息投递,保证发送方发送顺序与接收方展现顺序一致 (2)群聊消息投递,保证所有接收方展现顺序一致 (3)充值支付消息,保证同一个用
本文主要讲了金融系统在运转中对时间基准要求的重要性,以及中心母钟在金融系统运行的功能和中心母钟在对时间同步统一过程中发挥的作用,方便金融系统的用户在对时间同步问题上的顾虑参考。
NTP(Network Time Protocol,网络时间协议)是由RFC1305定义的时间同步协议,用来在分布时间服务器和客户端之间进行时钟同步,同时也是一个因特网标准,它采用应用层同步方法将计算机时钟和UTC时间(格林尼治时间)进行同步,因此时间精度不高,一般在10ms到100ms之间。
时间的精确和统一是变电站自动化系统的最基本要求。只有电力系统中的各种自动化设备(如故障录波器、继电保护装置、RTU微机监控系统等)采用统一的时间基准,在发生事故时,才能根据故障录波数据,以及各开关、断路器动作的先后顺序和准确时间,对事故的原因、过程进行准确分析。统一精确的时间是保证电力系统安全运行,提高运行水平的一个重要措施。全球卫星系统(GPS和北斗)的出现为实现这些需求提供了可能。
作者|周翔 上个月 22 日,备受瞩目的 CVPR 2017 最佳论文在夏威夷会议中心揭晓。本届 CVPR 2017 共有两篇最佳论文(分别被康奈尔和清华团队、以及苹果团队拿下),两篇最佳论文提名,以及一篇最佳学生论文。 除了这些获奖论文之外,CVPR 2017 还收录了一些非常有意思的论文。其中,师从张世富教授的哥伦比亚大学在读博士寿政的论文——“Convolutional-De-Convolutional Networks for Precise Temporal Action Localizat
本文是AVB系列文章的第二篇,主要介绍AVB协议族中的精确时钟同步协议gPTP(IEEE Std 802.1AS-2011)。
在时间敏感型网络中(例如在IEEE TSN和IETF Detnet中)使用流重塑,以减少网络内部的突发性并支持计算保证的时延边界。使用每流调节器(例如令牌桶过滤器)或交错式调节器(与IEEE TSN异步流量整形(ATS)一样)执行此操作。两种类型的调节器都是有益的,因为它们消除了由于网络内部的复用而导致的突发性增加。通过使用网络演算,可以证明它们不会增加最坏情况的延迟。但是,假设所有网络节点的时间都是完美的,则建立了调节器的属性。实际上,节点使用本地的、不完美的时钟。时间敏感型网络有两种形式:(1)在非同步网络中,本地时钟在每个节点上独立运行并且其偏差不受控制;(2)在同步网络中,本地时钟的偏差保持在很小的范围内使用例如同步协议(例如PTP)或基于卫星的地理位置系统(例如GPS)。在这两种情况下,我们都会重新审视监管机构的性质。在非同步网络中,我们表明忽略时序不正确可能会由于每流或交错式调节器的无限延迟而导致网络不稳定。为了避免此问题,我们提出并分析了两种方法(速率和突发级联以及异步双到达曲线方法)。在同步网络中,我们表明流量调节器没有不稳定,但是令人惊讶的是,交错的调节器会导致不稳定。为了建立这些结果,我们开发了一个新的架构来捕获非同步和同步网络中时钟的工业需求,并且我们开发了一个工具箱,该工具箱扩展了网络演算以解决时钟缺陷。
摘要:随着电子政务的不断发展,许多省份都建立了自己的政务网络,使用的网络设备和服务器日益增多,这些设备都有自己的时钟,是可以调节的,因此网络中的所有设备和主机的时间无法保证是同步的,经过长期运行,时间差会越来越大,这种偏差在单机中影响不太大,但随着各种网络应用的不断发展,对时间的要求也越来越高,时间不同步会引发许多意想不到的问题,接下来我们结合实际的网络架构,讨论NTP在政务网中的解决方案。HR-901GB时钟服务器为你的电子政务系统提供标准时间同步服务。
NTP服务器需要解决高速公路的三大业务系统(联网监控系统、联网收费系统、通信系统)之间的时间不同步问题,联网监控内部各子系统(电力监控系统、火灾报警系统、事件检测系统、隧道智能控制系统等)之间的时钟异步问题,各路段之间的时间不同步问题,都需要标准的时间来对各个系统进行时间同步设置。
摘要:随着电子政务的不断发展,许多省份都建立了自己的政务网络,使用的网络设备和服务器日益增多,这些设备都有自己的时钟,是可以调节的,因此网络中的所有设备和主机的时间无法保证是同步的,经过长期运行,时间差会越来越大,这种偏差在单机中影响不太大,但随着各种网络应用的不断发展,对时间的要求也越来越高,时间不同步会引发许多意想不到的问题,接下来我们结合实际的网络架构,讨论NTP在政务网中的解决方案。
目前国内电网逐步形成以大机组,超高压和高自动化为主要特征的现代化大电网,电网运行瞬息万变,发生事故后更要掌握实时信息及时决策处理,这些都离不开统一的时间基准.时间同步主要用于电力系统各类自动化及继电保护装置,这些装置包括:调度自动化系统,电能量计费系统,事件顺序记录装置,故障录波器,微机继电保护装置,电厂,变电站监控系统等。当前在国内电力系统中,时间同步的应用方式是接收导航卫星发送的无线标准时间信号并采用符合相应规范要求的装置作为统一时钟信号源,再由统一时钟信号源向电网中各类装置提供标准时间,时标的输出主要包括1PPS输出,1PPM输出,IRIG-B输出,NTP/SNTP,PTP等.
本文主要对GPS时钟从定义上做了简单的介绍,并对GPS时钟的应用选择做了具体的阐述,主要以输出类型作为说明依据,方便部分客户对GPS时钟为物料名称的设备咨询做出有效的信息反馈。
众所周知,ns是一个开源的网络仿真软件,通过搭建自己的网络拓扑,我们可以得到一大堆仿真数据,可以选择保存tr文件也可以保存为pcap文件,下面主要讲的是如何使用tshark处理pcap文件。 tshark是Wireshark的命令行工具,正因为是命令行,所以处理速度是比Wireshark快不少,功能也更强,下面是我使用tshark处理pcap的一个例子: tshark -r "./bottleneckTcp-0-0.pcap" -R "ip.dst=="10.1.1.1"&&tcp.port==50000"
时间同步服务器,顾名思义就是用对校时/对时的一款服务器,这款服务器是从卫星上获取时间,常见的卫星就是GPS卫星和北斗卫星,对时服务器可以同时从GPS和北斗上获取时间信息,通过所需要的物理接口方式输出标准的时间信息,从而达到对时的目的。
我公司生产研发的gps同步时钟目前已在各行各业投入使用,现就客户使用中出现的问题,做以下汇总及解决方案。
GPS卫星定位系统它可以应用在军事、国防、通信、授时等多个领域。GPS卫星定位系统应用在授时方面,是将卫星信号传送给设备并进行授时。GPS网络时间服务器是接收GPS卫星信号的时间服务器,它可以将卫星时间信号转换为网络、串口、秒脉冲等时间信息,能为用户提供相应的时间信息。GPS网络时间服务器主要输出网络时间信号,能在多种环境中进行授时,并且授时准确使用方便,改变了传统的钟表授时方式。
] 分支,并双击 SpecialPollInterval 键值,将对话框中的“基数栏”选择到“十进制”上,如图1所示
随着水电站的快速发展,分散的系统计算机监控系统、水情测报系统、视频监控系统、状态监测系统、生产信息管理系统……
最近Transformer在统一建模方面表现出了很大的威力,是否可以将Transformer应用到时序异常检测上引起了很多学者的研究兴趣。最近来自阿里达摩院、上海交通大学的几位学者就近年来针对时间序列场景中的Transformer模型进行了汇总,在Arxiv上发表了一篇综述。综述涵盖了Transformer针对时序问题下的具体设计,包含预测、异常检测、分类等诸多工业界常用场景,并开源了代码,是非常不错的学习资料。
将局域网上各种需要同步时钟的设备的时间信息基于GPS时间偏差限定在足够小的范围内,这种时钟系统便就叫做GPS授时系统。
随着我国社会高速发展,现代文明的进步以及科技的日新月异,能够维护教育公平,维护考生的权益和利益的标准化考场建设被各级教育机构列入规划。
之前反复看了好久电视盒子,最高看到像冥王峡谷 S922芯片的怪兽,奈何钱包羞涩,最终还是选了比较成熟的中档 S905x3的系列,有很多选择,最终买的是 MECool KM1 4G 内存的版本。
领取专属 10元无门槛券
手把手带您无忧上云