首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

ML | 建模的KS

我们这做模型的时候,经常是会用KS值来衡量模型的效果,这个指标也是很多领导会直接关注的指标。今天写一篇文章来全面地剖析一下这个指标,了解当中的原理以及实现,因为这些知识是必备的基本功。...不过这不影响我们去使用它,我们只需要知道在中是怎么实现的,并且在实际场景中怎么去使用它就可以了。就如上面我们说的,KS在主要是用于评估模型的好坏样本区分度高低的。什么是区分度?...可以看下图: 从业务上来说,就是越往后的箱子,客户的质量越差,rate整体上呈现单调性,从而可以把大多数的坏人,直接从箱的维度上就可以区分开来了,在后续的策略使用体验上十分友好。...02 KS的生成逻辑 KS的生成逻辑公式也是十分简单: 好样本累计占比坏样本累计占比 在领域,我们在计算KS前一般会根据我们认为的“正态分布原则”进行分箱,一般来说分成了10份,然后再进行KS的计算...03 KS的效果应用 KS的值域在0-1之间,一般来说KS是越大越有区分度的,但在领域并不是越大越好,到底KS值与模型可用性的关系如何,可看下表: 004 KS的实现 首先我们来对上面展示的例子进行

4.6K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    信贷模型搭建及核心模式分类

    但是互联网金融所包含的业务种类远不止这两个,单纯的信用贷款类,就有专门放贷给学生的学生;在朋友圈之内贷款的朋友;给外企白领贷款的白领…… 如果你拿学生的模型给农民客户来用,或者拿给上海白领开发的模型给甘肃...另外,模型在不同的阶段体现的方式和功能也不一样。...从资金的角度来看,模型是为了评估用户还款能力和还款意愿,反欺诈反作弊,防止用户薅羊毛和保证平台安全等功能;从行业的角度,互联网模型体现在消费金融/供应链金融/信用借贷/P2P/大数据征信等方面。...所以说,模型的计算策略和机制在一个公司属于绝密,规则除了核心的员工,其他人是不能知道规则的。 四、的核心 如果说金融产品的核心是,那么的核心是什么?...五、模型的设计步骤 总体来说模型的设计主要可以分为以下的几个步骤: 1.获取数据 信用评估来自于用户数据,模型规则其实就是用户数据规则,信息的纬度也比较广泛,大致可以分为基本信息/行为信息

    2.3K10

    支付模型

    这就需要对模型进行合理的设计。一般来说,要提升的拦截效率,就需要考虑更多的维度,但这也会带来计算性能的下降。在效率和性能之间需要进行平衡。...二、基于规则的 规则是最常用的,也是相对来说比较容易上手的模型。从现实情况中总结出一些经验,结合名单数据,制定规则,简单,有效。 常见的规则有: 1....互联网金融离不开机器学习,特别是支付。 在各种支付模型中,决策树模式是相对比较简单易用的模型。 如下的决策树模型,我们根据已有的数据,分析数据特征,构建出一颗决策树。...这个过程,将在下一篇的架构中介绍。 五、模型评估 本质上是对交易记录的一个分类,所以对模型的评估,除了性能外,还需要评估“查全率”和“查准率”。...支付场景分析 ; 支付数据仓库建设 ; 支付模型和流程分析(本文); 支付系统架构 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn

    2K21

    ML | 中的异常检测原理与应用

    今天来介绍一下中的异常检测,从最基础的概念开始讲起,因为本人对这块的内容平时工作也做得不多,更多滴偏向于“纸上谈兵”,有什么说得不对的地方,也欢迎各位朋友指正~谢谢。...异常检测的概念 02 异常检测的难点 03 异常检测的分类及常见算法 01 异常检测的概念 异常检测(Anomaly Detection 或 Outlier Detection),又称为离群点检测,在我们领域很多地方都会用到...,机器难以具体识别开来; 2)现实中很少有异常点的标签,因为标签越多也就意味着遇到过的异常越多,也不符合常识认知; 3)对于标签的定义也是很难,比如1个金融场景,欺诈的定义有太多,比如薅羊毛的、团伙骗的...、个人骗的,基本上都混合在一起,不利于有监督模型的开展。...3.集合异常:某一堆的数据集合,整体表现异常,但看单个个体又没那么异常的,比如说地方性团伙骗。 好了,讲完了异常点的分类,来讲一下异常检测算法的分类吧。

    2.8K20

    ML | 建模中怎么做拒绝推断

    比如说,审批通过率很高的场景,这样子其实后样本基本上与真实的客群分布相差无几;相反地,另一个极端,比如审批通过率很低的场景,由于拒绝推断与真实后表现之间会存在比较大的差异,加入拒绝样本不太好去控制模型的收敛...《建模中的样本偏差与拒绝推断》https://zhuanlan.zhihu.com/p/88624987 不过我也还是把他文章里的分类体系在这里重点再次分享一下。...方法一:简单说就是把模型应该拒绝的客户,按照一定规则(比如不那么坏的客户)给予审批通过的决策,后续观察其后表现,给未来的模型提供更丰富的数据; 方法二:指的是从其他机构或者类似产品中获得客户的后表现数据...06 总结一下 本文算是一个对拒绝推断的入门介绍了,让初涉模型的同学有一个相对来说比较清晰的全局认识,这里面涉及到的很多算法模型上的细节并没有展开来讲,因为我觉得这也会让阅读带来比较大的负担,公众号的文章还是要控制在几分钟内读完比较合适...Reference [1] 异常检测算法分类及经典模型概览 https://blog.csdn.net/cyan_soul/article/details/101702066 [2] 建模中的样本偏差与拒绝推断

    1.8K30

    为本创新驱动,券商如何实现智能加速?

    而由于合规处于企业核心竞争力的高度,原数据积累10年,数据量已超30TB。...非现场平台各项报表和查询生成时间逐渐拉长。夜间批量任务越来越慢,部分任务出现超时失败现象。 02 原合规数据库数据量巨大,原有的传统的备份手段难以实现数据的实时保护。...解决方案 沃趣科技以QData高性能数据库云平台作为数据库基础架构平台替换原传统“烟囱式”系统架构,承载合规核心数据库系统,助力业务处理效率大幅提升。...价值提升 1 通过QData数据库云平台大幅提升了系统的业务效率,日终调度业务从原十几个小时缩短至1.5小时,性能提升10倍以上。...2 通过多年的发展,基于沃趣QData Cloud云平台解决方案逐步拓展成数据库私有云应用场景,以Oracle为代表的数据库如:客户关系管理、、合规、自营交易等系统正在逐步迁移到数据库私有云平台。

    1.2K10

    ML | 建模中GBDT和XGBoost怎么调优

    03 什么建模场景下常用这两个明星算法?...这一小节其实是想着来梳理下风建模中各个环节有哪些模型,顺便看看这GBDT和XGBoost哪儿能用,简单点分类就按前、中、后来,我根据自己过往的经验,按照出场率来评个分,从S级-A级-B级-C级-...中 B卡(行为评分卡):S级出场率。 交易反欺诈:A级出场率,主要是支付,防止客户进行薅羊毛、套现等行为。 客户流失:A级出场率。 后 催收告警:A级出场率。 迁徙率预测:B级出场率。...而关于模型怎么调优,我会在下一节一起讲。...模型怎么调优 关于模型的调优,先前有篇文章讲得比较细致《ML[7] | 模型调优的思路有哪些》,大家可以移步去回顾一下。

    1.5K30

    领域特征工程

    在金融行业,风险控制()是核心环节,它关乎资产安全、合规性以及机构的长期稳健发展。随着大数据时代的到来,金融机构面临着前所未有的数据量和复杂性。...在这样的背景下,领域特征工程应运而生,成为连接原始数据与精准风险评估的桥梁。 特征工程,简而言之,是对数据的一种深度加工,它通过一系列技术手段,将原始数据转化为对风险预测有用的信息。...在领域,特征工程的核心目标是构建出能够准确反映个体或实体风险水平的特征集。...此外,良好的特征工程实践还能促进模型的解释性,为决策提供更加透明的依据。 随着技术的发展,特征工程的方法也在不断创新。...通过综合运用这些特征衍生方法,领域的特征工程能够更全面地挖掘数据潜力,为风险评估提供多维度的视角。

    23610

    决策引擎经验

    一套完整的体系,在中,少不了决策引擎,今天就浅谈一下决策引擎。 一、优先级 决策引擎是一堆规则的集合,通过不同的分支、层层规则的递进关系进行运算。...系统的作用在于识别绝对与标识相对风险,如果是绝对,则整套的审核结果便将是“拒绝”。既然结果必然是“拒绝”,则没必要运行完所有的规则,而主要单条触发“拒绝”即可停止剩余规则的校验。...三、记录与统计 最终到底是“跑出来”的,所以,整个系统对所有不同规则的触发需进行有效的记录与统计,以便后期可支持数据分析与模型调整的相关工作。...3、数据源内容 举例说明:某些规则是通过二次数据解析与汇总进行的,但原始数据需要进行保存,诸如手机账单的通话明细数据,此部分数据一是可作为规则使用,二是未来可用作于催收与后管理。...(聚信立) 四、建模 现金体系较简单。如果是固定额度与固定费率式的产品业务定价,则体系更多的是规则的集合。

    1.1K30

    建模整体流程

    确定建模目的 在信贷领域中建立模型是为了找出可能会逾期的客户,根据逾期的可能性和资金的松紧程度选择是否放贷。 在支付领域建立模型是为了找出可能存在非法经营的商户,保证商户没有违法经营。...确定好坏样本逻辑 在信贷领域中逾期大于x期(不同公司取值不同)的客户定义为坏客户(1),从未逾期的客户定义为好客户(0) 在支付领域中,有赌博、欺诈、套现、伪卡等行为的商户定义为坏商户(1)(具体根据模型要防的风险决定...特征工程 在领域一直都有这样一句话 “数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据。通俗的讲就是衍生变量去捕获风险客户。...模型上线 在支付领域如果模型验证没有问题,一般会上到线上,自动生成案例。在信贷中会模型搭配规则,判断申请贷款的人是通过放贷、拒绝放贷、还是转人工处理。...这种也是线上处理,有些公司是准实时批,有些是实时批,对后台的要求较高。 9.

    2K20

    ML | 模型报告以及上线后需要监控的内容

    一个优秀的模型上线报告以及一个优秀的上线后模型监控报表,在我们日常建模中是非常的常用并且有用的,今天这个话题就来和大家聊聊怎么去制作优秀的模型上线报告以及上线后的模型监控报表,主要聊聊思路,先要有一个全局的感受...以下内容均基于自己浅薄的经历提炼的,如有纰漏,欢迎指正或补充哦,欢迎交流~ 00 Index 01 聊聊为什么要做这件事 02 标配的模型上线报告应具备哪些内容 0201 模型现状 0202 KS值与各种曲线...02 标配的模型上线报告应具备哪些内容 0201 模型现状 想要突出你模型的好,你得先分析旧模型的不好。 比如说,把目前线上模型的实际表现进行统计,如KS值、分组排序性、PSI等基础指标。...0202 KS值与各种曲线 我们需要描述模型的效果,在领域最直接的指标就是KS值,我们一般会认为KS>0.3才具备最基本的上线要求,而且我们要保证训练集、测试集以及跨时间测试集都需要达到标准哦!...一般情况下,我们会对预测结果按照一定的阈值,进行分组,比如分为A/B/C/D/E/F共6组,越靠后就意味着越有可能是高风险客户,我们给予一定的规则进行拦截。

    3.2K21

    实时业务系统

    账号:垃圾注册、撞库、盗号等 交易:盗刷、恶意占用资源、篡改交易金额等 活动:薅羊毛 短信:短信轰炸 项目介绍 实时业务系统是分析风险事件,根据场景动态调整规则,实现自动精准预警风险的系统。...什么样的事件是有风险的,风险分析需要用到统计学,对异常用户的历史数据做统计分析,找出异于正常用户的特征 实时性,风险事件的分析必须毫秒级响应,有些场景下需要尽快拦截,能够给用户止损挽回损失 低误报,这需要人工经验...对各种场景风险阈值和评分的设置,需要长期不断的调整,所以灵活的规则引擎是很重要的 支持对历史数据的回溯,能够发现以前的风险,或许能够找到一些特征供参考 项目标签 轻量级,可扩展,高性能的Java实时业务系统...基于Spring boot构建,配置文件能少则少 使用drools规则引擎管理规则,原则上可以动态配置规则 使用redis、mongodb做计算和事件储存,历史事件支持水平扩展 原理 统计学...; 扩展规则,针对需要解决的场景问题,添加特定规则,分值也应根据自身场景来调整。

    2.2K10

    数据体系-简介

    早期传统金融的主要利用了信用属性强大的金融数据,一般采用20个维度左右的数据,利用评分来识别客户的还款能力和还款意愿。...结合中国互联网发展,以及目前的征信监管要求,对可用数据及可用类数据做一个全面的梳理。...2.数据来源 2.1 数据应用逻辑 常见流程中,客户准入时提供的资信材料有限,业务机构数据体量不足,仅仅根据内部风险数据进行风险评估会非常片面,无法全面的把某位客户的风险情况,所以通常需要依赖于第三方供应商提供数据作风支撑...2.1.3 制定流程 注册信息提交;生物信息识别;准入规则判定;身份信息验证;三方数据核验;授信定额定价;用户确认提现;中行为监测;额度利息管理;后催收管理等。...4.2 明确需求 建议:回顾第二节数据应用逻辑关于业务类型、风险类型、流程、风险画像等的介绍。

    4.1K65
    领券