(
1
对多 ) , 每个对象同时只能在
1
个分组中 (
1
对
1
) ;
④ 硬聚类 与 软聚类 : 每个数据对象只能属于一个组 , 这种分组称为硬聚类 ; 软聚类每个对象可以属于不同的组...算法终止条件 ( 切割点 ) : 用户可以指定聚类操作的算法终止条件 , 即上面图示中的切割点 , 如 :
① 聚类的最低个数 : 聚合层次聚类中 ,
n
个样本 , 开始有
n
个聚类 , 逐步合并..., 当聚类个数达到最大值
max
, 停止聚类算法 ;
③ 聚类样本的最低半径 : 聚类的数据样本范围不能无限扩大 , 指定一个阈值 , 只有将该阈值内的样本放入一组 ; 半径指的是所有对象距离其平均点的距离...基于密度的聚类方法 : 相邻的区域内 样本对象 的密度超过某个阈值 , 聚类算法就继续执行 , 如果周围区域密度都很小 , 那么停止聚类方法 ;
① 密度 : 某 单位大小 区域内的样本对象个数 ;
②...基于密度的聚类方法 算法优点 :
① 排除干扰 : 过滤噪音数据 , 即密度很小 , 样本分布稀疏的数据 ;
② 增加聚类模式复杂度 : 聚类算法可以识别任意形状的分布模式 , 如上图左侧的聚类分组模式