如果大数据是一块蛋糕,那么大数据分析工具就是切蛋糕的刀叉。人们都期待着能用“刀叉”从大数据中挖出自己想要的“价值”,因此大数据分析工具被人们寄予厚望。而云计算技术的兴起似乎又给大数据注入了新的推进剂,那么大数据和云计算的结合又会发生怎样的化学反应?对大数据分析工具的发展又有怎样的影响?
大数据搭着信息时代的快车来到了我们的面前,数据的价值逐渐为人们所重视,同时也让数据分析师的身价倍增。而随着大数据分析工具等大数据应用技术的出现,未来的数据分析师又将遇到怎样的挑战和机遇呢? 工具抢了人
微博足迹可视化:http://vis.pku.edu.cn/weibova/weibogeo_footprint/index.html
估计大家听大数据听得太多,耳朵都快起茧了吧?谁要IT界不如娱乐界那么精彩热闹,几年才憋出一个流行词,自然大家只要提到数据,都说“大”;提到服务,都说“云”。 言归正传,你弄明白大数据分析要分析什么数据了吗?(弄明白的高手可以直接飘过;没弄明白的,看下面的内容能不能涨姿势) 我们先来简单聊几句有关大数据分析工具的背景。无需置疑,现在大数据平台和大数据分析工具日益普及,作用是可以帮助企业收集和分析数据,好处是可以寻找有价值的商业信息和洞察,以改进产品与服务。大数据分析工具用于分析数据,可以开发预测模型(pre
大数据时代,大数据分析行业水涨船高,很多身边的朋友都想学习一下如何进行大数据分析。经常有人问我该怎么选择大数据分析工具。也对,面对市面上那么多大数据分析工具,大家在选择的时候都会懵一下。
随着科学,技术和经济的进步,人类已经进入了信息化和大数据时代。人类生活的世界每天都在爆炸性地生成大量数据,并且面临着诸如宇宙繁星般的大量数据。如何收集,清理,整合,存储,计算,建模,训练,显示和分析数据,如挖掘黄金一样的找到有价值的数据并使用它,一直是许多公司困扰的问题。因此,为了解决这个问题并更好地分析和开发数据,大数据分析工具应运而生。
目前,大数据分析是一个非常热门的行业,一夜间,似乎企业的数据已经价值连城。企业都在开始尝试利用大数据来增强自己的企业业务竞争力,但是对于大数据分析行业来说,仍然处于快速发展的初期,这是一个快速发展的领域,每时每刻的都在产生新的变化。我们来看下大数据行业的未来的五个趋势。 1.基于云的大数据分析 Hadoop是用于处理大型数据集的一个框架和一组工具,这个最初被设计工作在物理机的集群上,但是目前这种现象已经改变,越来越多的基于云中的数据处理器技术出现,例如亚马逊利用云的数据BI的托管长款,谷歌B
虽然大数据分析工具提供的功能并非全新,但有三大关键因素已经降低大数据分析的门槛,可以让更多的企业考虑采用大数据技术。 成本 早期的产品通常标价很高,并提供昂贵的集成与部署售后服务。现在的工具套件可选择性多,价格模式也更容易令人接受。 简易 越来越多的工具是面向非专家级别的用户设计的。早期的产品使用者是统计师和数据家,他们不但建立模型,而且还理解这些模型具体如何工作。现在的产品不要求用户要有高级科学学历才能够理解模型结果中的业务优势。 性能 可扩展平台可以满足大数据分析对数据量和计算的需求。现在有很多开源平台
佛瑞斯特研究公司(Forrester)的研究人员发现,2016年,近40%的公司正在实施和扩展大数据技术应用,另有30%的公司计划在未来12个月内采用大数据技术。2016年NewVantage Partners的大数据管理调查发现,62.5%的公司现在至少有一个大数据项目投入生产,只有5.4%的公司没有大数据应用计划,或者是没有正在进行的大数据项目。 研究人员称,会有越来越多的公司加速采用大数据技术。互联网数据中心(IDC)预测,到2020年大数据和分析技术市场,将从今年的1301亿美元增加至2030亿美
通过部署和使用大数据分析工具,分析流程可以帮助公司提高运营效率,产生新的利润,获得竞争优势。企业可选择的数据分析应用程序有很多。比如描述性分析善于描述已发生的事情,揭示因果关系。描述性分析主要输出查询、报表和历史数据可视化。
文:傅志华 大数据的产业链从整体上可以分为四大层,包括IT基础层、数据基础层、数据应用层和数据安全层。个人认为在中国市场对于创业者来说,数据应用层的创业机会最多,想象空间也最大。 本文将重点介绍数据应
大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。这些技术下一步将如何发展?它们之中哪些技术将广为流行?又会诞生哪些新的技术?
数据分析的概念对于大家来说早已司空见惯,数据分析技能目前也已成为求职者和工作场所人员的一个亮点。对于面对自身累积的庞大财务数据,业务数据和运营数据,流量数据及其他数据资产的公司,公司如何利用大数据并进行大数据分析?我们从以下几个方面来了解一下。
大数据分析工具使用户能够分析各种各样的信息——包括结构化事务数据和社交媒体帖子、Web服务器日志文件及其他形式的非结构化和半结构化数据。一旦组织决定要购买一个大数据分析工具,下一步就是制定一个流程,评估可用的产品,然后从中找到一个最适合你需求和要求的产品。 下面我们将介绍在评估各种大数据分析工具符合企业需求的程度时可能用到的必备特性和特定属性。然后,你再编写一个预案请求(RFP),说明使用这些工具将如何解决组织的需求。 评估标准 建模技术的广度与深度。供应商已经应用了不同级别的建模,并且相应地开发了不同复杂
过去一年内,我们看到了大数据的井喷式发展,数据处理分析成为热门,大数据行业呈现出信息激进之势。这导致数据科学家、数据应用程序员和商业分析师等大数据方面的人才成为当下职场最炙手可热的岗位。 但是,我们也能发现,有能力处理日益增长的大规模数据计算的专家和人才,还远远达不到市场需求的数量。 有人预测,随着商业数据不断增多,2017年将成为新数字信息时代的开始。但是如果没有足够多的专家对这些数据进行分析利用,那么这些资源将在很大程度上得不到充分的利用。 很不幸,事实情况是大数据的发展要远远快于我们学习利用数据的速度
云计算和智能制造是当今科技领域两个最引人注目的发展方向。它们的结合为制造业带来了巨大的机遇和变革。本文将深入探讨云计算在智能制造中的应用,以及这个领域的未来前景。
引言 虎牙是中国第一家上市的游戏直播公司,旗下产品包括知名游戏直播平台虎牙直播、风靡东南亚和南美的游戏直播平台NimoTV等,产品覆盖PC、Web、移动三端。其中,游戏直播平台虎牙直播月活达1.5亿。 如何借助于海量业务数据将全平台的优质内容与终端用户更智能、高效地连接起来,为公司运营和业务发展提供更为有效的数据能力支撑,是虎牙大数据团队(下面简称虎牙)过去和未来一直需要深入思考和探索的重要使命。为了达成以上愿景,虎牙选择与腾讯云EMR团队合作,接入大数据云端解决方案。 本文将通过案例解读,带大家深入了
虎牙是中国第一家上市的游戏直播公司,旗下产品包括知名游戏直播平台虎牙直播、风靡东南亚和南美的游戏直播平台NimoTV等,产品覆盖PC、Web、移动三端。其中,游戏直播平台虎牙直播月活达1.5亿。
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
一、大数据分析的五个基本方面 1、可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。 2、数据挖掘算法 大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也
“大数据”不再只是一个流行词。弗雷斯特研究公司的研究人员发现,“2016年,近40%的公司在实施大数据技术,并且扩大了采用力度。另有30%的公司计划在未来12个月内采用大数据技术。” 类似的,NewVantage Partners的《2016年大数据高管调查》发现,如今62.5%的公司在生产环境中至少有一个大数据项目,只有5.4%的企业组织没有计划或开展大数据项目。 研究人员表示,采用大数据技术的势头不太可能很快就减慢。IDC主管分析和信息管理的集团副总裁丹·维塞特(Dan Vesset)说:“出现的大量
原作者 Maruti Techlabs 编译 CDA 编译团队 本文为 CDA 数据分析师原创作品,转载需授权 大数据每天都在发展,并成为科技界的热门词汇。我们周围的许多人都在谈论它,但他们知道它的真正含义吗? 大数据只不过是非结构化数据的集合。这些数据不是以特定的格式,因为数据集通常是巨大的,有时是数十兆字节,有时甚至超过了PB级别。大数据这个术语出现之前用的是大型数据库(VLDB),由数据库管理系统(DBMS)进行管理。 大量与商业有关的数据能够有效增加公司的销售与利润。为了做到这一点,我们需要利用大
<数据猿导读> 知乎数据库出现严重事故,用户数据泄漏恐怕在劫难逃;甲骨文宣布收购云计算仓储及库存管理平台 LogFire,用于提升供应链管理能力;美国初创公司Saildrone完成1400万美元融资,
大数据的通俗定义为用现有的一般技术难以管理的大量数据的集合,广义定义为一个综合性概念,它包括因具备4V(海量/多样/快速/价值,Volume/Variety/Velocity/Value)特征而难以进行管理的数据,对这些数据进行存储、处理、分析的技术,以及能够通过分析这些数据获得实用意义和观点的人才和组织。 1、大数据分析在企业安全管理平台上的应用 目前应用于大数据分析的主流技术架构是Hadoop,业界在进行大数据分析时越来越重视它的作用。Hadoop的HDFS技术和HBase技术与大数据的超大容量存储
前言
本文章提供视频讲解,详细见地址:https://www.bilibili.com/video/BV1uC4y1h7nN
导读:本文就给大家推荐一些用于数据分析的“必备神器”,其中很多工具是亲测过认为非常强大的,希望大家能从中找到对自己有帮助的工具。 1.微信大数据分析工具 新榜:http://www.newrank.cn/ 清博:http://www.gsdata.cn/ 数说故事:http://www.datastory.com.cn/ 2数据可视化工具 百度ECharts:http://echarts.baidu.com/ Cytoscape:http://www.cytoscape.org/ 图表秀:http://ww
大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。 现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。 通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。 大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。 以前的商业
大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。 现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。 通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。 大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。 以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得
提供大数据解决方案的技术供应商列表似乎是无限的。现在,许多特别流行的大数据解决方案都属于以下15种类别之一,我们一起来看看吧:
作为一个入门级工具,Excel是快速分析数据的理想工具,也能创建供内部使用的数据图。如果在众多数据分析工具中您只了解最基本的Excel,以下是最好的进阶路线:
目录: 大数据分析的五个基本方面 如何选择适合的数据分析工具 如何区分三个大数据热门职业 从菜鸟成为数据科学家的 9步养成方案 从入门到精通—快速学会大数据分析 一、大数据分析的五个基本方面 1.可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。 2.数据挖掘算法 大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格
众所周知,通过计算每时每刻都会产生大量的用户数据。通过社交网络数据库和GPS(全球定位系统),每个人使用某些应用程序时所在的位置,以及他们的行为,观点,兴趣和所有需求都被搜索引擎记录了下来。
近年来,大数据技术以各种不同的方式影响着我们的生活。通过对大量数据加以分析,政府、企业和学者等可以找到有价值的东西,从而提升我们的生活水平,改善我们的生活和工作方式。越来越多的企业利用大数据分析工具找到发展趋势和适合企业发展的方法,从而为合伙人带来利益。 数据集的内存都是以千兆字节计算的,因此要对如此巨大的数据进行分析也是一项挑战,并且往往都有时间要求,只有对数据快速的解读和分析才能更快做出决策。 如果找不到适宜的分析工具,那么大数据的管理和分析就非常浪费时间。这里提供几种提高大数据分析价值的方法 1 数据
企业已经看到了将大数据与云计算绑定所带来的好处。云计算提供可扩展性,使得其成为大数据分析的实践之车。 对于企业而言,大数据不仅是个热门话题,更是真切的需求所在。许多企业开始着手于大数据分析项目,但是现在,越来越多的企业存储的信息量就算不是PB级,起码也有TB量级。这些企业可能希望每天能分析几次关键数据,甚至是实现实时分析;而传统BI流程对历史数据进行分析的频率是以周或月为单位的 此外,越来越多复杂查询的处理带来了各种不同的数据集,其中有可能包含来自企业资源计划(ERP)系统和客户关系管理(CRM)
随着大数据概念的提出,新兴相关数据公司也犹如雨后春笋般出现,想象一下每早与大数据创业梦想一起醒来,这确实是一种美妙的感觉。粗浅地想象一下貌似处理大数据很容易,你只需要: 1)一个使一切工序“自动化”的想法 2)一伙能够拿出一个个算法的“数据科学家” 3)数据!大量的数据! 如果你已经有了一个基本的想法,而至于那些“数据科学家”们,你通常可以在和你合伙的小伙伴们中找到他们(如果没有的话,去哈佛、耶鲁、伯克利或者纽约 大学这样的高校碰碰运气吧)。 万事具备,只欠东风,那么问题来了,该如何找到数据呢?通常
T客汇官网:tikehui.com 译者 | 飞逸 随着大数据和云计算的流行,云分析也开始在市场中展露了头角。2017年二月,Garnter在其商业智能分析平台魔力象限图 报告中指出,大部分的受访者(51%)已经或正在计划部署BI分析。 Garnter的分析师说到:“我们预计这种趋势将会继续,2020年绝大多数(超过一半)的本地许可证模式将迁移至云端。”据Garneter预测,到2020年,BI分析市场每年将增长7.9%。 而哈佛商业评论则认为人们对于云分析的兴致似乎更高:到2017年底,预计将有69%的
对于海量数据价值的挖掘,需要通过大数据分析来实现,而这些数据由于具有不同于传统数据的新特征,传统的数据分析技术和工具都不能高效的进行处理,因而才有了基于大数据技术平台进行大数据分析的需求。今天,我们以Hadoop框架为例,来看几个大数据分析项目实例。
对于许多大企业来说,开源大数据分析已经成为日常业务中一个必不可少的组成部分。据New Vantage Partners公司对《财富》1000强公司的高层主管开展的调查显示,如今62.5%的企业在生产环
2012年,FirstMark资本的MattTurck绘制了大数据生态地图2.0版本,涵盖了大数据的38种商业模式,被业界奉为大数据创业投资的清明上河图。两年后的今天,经过漫长的等待,Turck终于推
随着大数据概念的提出,新兴相关数据公司也犹如雨后春笋般出现,想象一下每早与大数据创业梦想一起醒来,这确实是一种美妙的感觉。粗浅地想象一下貌似处理大数据很容易,你只需要: 1)一个使一切工序“自动化”的想法 2)一伙能够拿出一个个算法的“数据科学家” 3)数据!大量的数据! 如果你已经有了一个基本的想法,而至于那些“数据科学家”们,你通常可以在和你合伙的小伙伴们中找到他们(如果没有的话,去哈佛、耶鲁、伯克利或者纽约大学这样的高校碰碰运气吧)。 万事具备,只欠东风,那么问题来了,该如何找到数据呢?通常有以下
在产品矩阵业务中,通过仪表盘可以快速发现增长中遇到的问题。然而,如何快速洞悉问题背后的原因,是一个高频且复杂的数据分析诉求。
作者: 科赛网 汪梦梦 邓以勒 今天主要是以一个数据分析者的角度来与大家分享如何使用spark进行大数据分析。 我将分以下4部分为大家进行介绍。首先介绍spark的相关背景,包括基本概念以及spa
摘要 日前,腾讯云大数据数据湖计算 DLC 与国内两家知名云厂商的数据湖产品进行了性能对比,其中腾讯云 DLC 在三款产品中SQL平均执行查询时间短,性能表现优。腾讯云大数据 DLC 在存算分离和大数据量查询场景下,海量查询性能较 A 厂商 产品提升 248%,较 B 厂商产品提升36%。 在存算分离大数据量查询场景下,腾讯云大数据 DLC 较 A 厂商 、B 厂商表现更优,同时在较大任务上的任务执行成功率更高,所有任务均成功执行。结合性能、性价比、使用体验等因素,腾讯云 DLC 在云原生数据湖选择上整体上
现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。 大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得到可以量化的收益。然而事实并非如此,实际上你可以在当天就获得真实的意图,至少是
营销的基本原理是一致的,每个人都喜欢洞察力,因为这些数字模式可以提供最安全的方法来确保企业采取正确的行动,更有效地运作,以及将其资源用在何处。数据已经成了战略的据点。
<数据猿导读> LogMeIn拟18亿美元收购Citrix旗下GoTo业务,年收益超10亿美元;美国基因测序公司Phosphorus完成1000万美元融资;IBM“环保之旅”再进一步,将建土壤环境大数据联合实验室……以下为您奉上更多大数据热点事件 来源:数据猿 作者:abby 一、LogMeIn拟18亿美元收购Citrix旗下GoTo业务,年收益超10亿美元 日前,来自荷兰的云通讯公司 LogMeIn 宣布将拟18亿美元收购Citrix 的GoTo业务,用于整合其云通讯业务。Lo
现在很多厂商都说自己的产品是大数据分析软件。如果只是根据功能去区分这些产品,的确是件难事,因为很多工具具有相似的特征和功能。此外,有些工具的差异是非常细微的。所以,关键区分因素可能还是要根据企业的能力以及在数据分析方面的成熟度,重点考虑如何在易用性、算法复杂性和价格之间寻找平衡。 我们将在本文对九个主流大数据分析软件厂商的产品进行对比,即Alteryx、 IBM、KNIME.com、 Microsoft、 Oracle、 RapidMiner、SAP、 SAS 和 Teradata,其中有的厂商提供的工具不
领取专属 10元无门槛券
手把手带您无忧上云