2021年11月22日,南方电网数字电网研究院有限公司发布《2021年南网数研院平台安全分公司数据中心升级完善二期(电能量平台融合改造、分节点云化等)项目存储计算组件和时序数据库采购公示公告》,采购方式单一来源。 项目概况:根据网公司云化数据中心主分节点建设安排,数据中心升级完善二期(电能量平台融合改造、分节点云化等)在原有数据中心升级完善一期项目及二期(数据湖、云化及服务组件层)建设的基础上,完善了数据中心数据处理及服务能力。本项目对数据中心存储计算组件进行扩容,新增913套存储计算组件,预算3652万元
作为腾讯唯一的时序数据库,CTSDB 支撑了腾讯内部20多个核心业务(微信彩票、财付通、云监控、云数据库、云负载等)。
在企业上云逐渐加速的背景下,云数据库作为企业重要的IT基础设施,其重要性毋庸置疑。各大云计算厂商不惜重金,纷纷在产品和技术层面加大布局,争夺这一重要的云服务市场。纵观国内前几大云服务商过去一年的云数据库领域的发展,腾讯云基于自身强大的业务支撑以及技术研发实力,在云数据库市场的突破格外引人注目。
CTSDB 是一款分布式、可扩展、高可靠的时序数据库,适用于有海量时序数据的物联网、大数据分析和互联网监控等场景。
物联网系统中,需要实时处理的数据可通过队列送入流处理引擎;不需要实时处理的数据,用于离线分析或数据挖掘,需要先存储起来。物联网系统的数据存储的方式很多,要根据实际场景来选择。
每一个游戏制作者都想制作出一款让玩家满意的游戏。但是作为开发者,如何知道哪些点是让游戏玩家满意的,哪些是不满意的?今天我们就聚焦这些点来进行讨论。
近日,国际领先的行业研究与咨询机构Forrester正式对外发布全球最新的数据库评估报告《The Forrester Wave™: Database-As-A-Service, Q2 2019》,腾讯云数据库(TencentDB)在性能规模、配置和管理、数据安全、执行力、开源、售后支持、综合收入、用户数量、合作伙伴9项细分指标均获高分。
2月19日,,就 Apache IoTDB 的核心技术及典型应用场景进行了直播分享探讨,分别是 Apache IoTDB:基于开放数据文件格式的时序数据库、IoTDB 在阿里云智能制造业务中的实践、智能运维场景中的时序数据库选型与挑战、时序数据库IoTDB在360的落地实践这4个主题。
随着云计算技术的广泛应用,越来越多的项目部署和迁移到云端,传统的监控告警系统在短时间内还不能适配云上的服务。为了实现实时系统运行状态的展示、故障的及时告警、历史状态的回看,可以基于开源的时序数据库Prometheus和可视化工具Grafana,搭配相关工具,快速搭建一个可靠准确的监控告警系统。本文记录了整个设计和搭建过程,以及遇到的一些问题和解决方法。
2021年度云原生数据库 PolarDB 产品介绍: PolarDB是阿里云自主研发的下一代关系型分布式云原生数据库,目前兼容三种数据库引擎:MySQL、PostgreSQL、高度兼容Oracle语法。计算能力最高可扩展至1000核以上,存储容量最高可达 100T。同时具有开源数据库简单、可扩展、高速迭代的优势,适合各个行业公司的创新业务使用。 获奖理由: 2021年3月PolarDB在墨天轮国产数据库流行度云原生数据库排行榜排名跃居 TOP 1。PolarDB直面云原生,是全球范围内业界首个实现了存储、
2017年时序数据库忽然火了起来。开年2月Facebook开源了beringei时序数据库;到了4月基于PostgreSQL打造的时序数据库TimeScaleDB也开源了,而早在2016年7月,百度云在其天工物联网平台上发布了国内首个多租户的分布式时序数据库产品TSDB,成为支持其发展制造,交通,能源,智慧城市等产业领域的核心产品,同时也成为百度战略发展产业物联网的标志性事件。时序数据库作为物联网方向一个非常重要的服务,业界的频频发声,正说明各家企业已经迫不及待的拥抱物联网时代的到来。 本文会从时序数据
点击▲关注 腾讯云数据库 8月28日,腾讯云数据库在京正式启动战略升级发布会。 未来,腾讯云数据库将聚焦云原生、自治、超融合三大战略方向,并且面向全球用户同步发布五大战略级新品: 数据库智能管家DBbrain 云数据库TBase 数据库备份服务DBS 云数据库Redis混合存储版 自研云原生数据库CynosDB商业化版本 腾讯云数据库产品总监王义成 云原生 云原生数据库CynosDB 不同于过去传统数据库+云能力扩展的模式,CynosDB是纯粹的云原生数据库,现已正式商业化。 它融合了传统数
腾讯云上有许多种数据库产品,本文简单介绍每种产品的介绍,特性,应用场景等,帮助各位根据业务需要选择最适合的数据库。
8月28日,腾讯云数据库在京正式启动战略升级发布会。 未来,腾讯云数据库将聚焦云原生、自治、超融合三大战略方向,并且面向全球用户同步发布五大战略级新品: 数据库智能管家DBbrain 云数据库TBase 数据库备份服务DBS 云数据库Redis混合存储版 自研云原生数据库CynosDB商业化版本 腾讯云数据库产品总监王义成 云原生 云原生数据库CynosDB 不同于过去传统数据库+云能力扩展的模式,CynosDB是纯粹的云原生数据库,现已正式商业化。 它融合了传统数据库、云计算和新硬件
5月29日下午,以《工业互联网的技术探索与实践》为主题的2021 腾讯云Techo Hub技术巡回活动第二站在西安老钢厂设计创意产业园盛大开启。陕西高端装备与智能制造产业研究院院长赵红武,中车瑞伯德智能系统股份有限公司技术总工赵奔,腾讯边缘计算、数据库、工业AI、物联网领域的技术专家,与现场开发者共同分享、交流了边缘计算、时序数据库等技术是如何支撑工业互联网建设的。
本项目由涛思数据投递并参与“数据猿年度金猿策划活动——2022大数据产业创新技术突破榜单及奖项”评选。
如果一艘快艇足够承载下你的所有货物到达彼岸,那么你不需要使用一艘轮船出行。产品设计和技术选型也是一样,我们经常会说:“我需要一个能够处理百万规模并发读写操作的,低延时,高可用的系统。” 如果按照这样的需求去设计系统,你可能得到的是一个设计复杂,代价昂贵的通用方案。但是如果仔细分析一下需求,你可能省略了需求背后的一些前提条件,比如真实的需求可能是这样的:“我需要一个能够处理百万规模的并发(只是理论峰值,平均情况小于10万并发)读写操作(读写比例1:9,只有追加写,没有修改操作)的低延时,高可用的(可以接受一定程度数据不一致性的)系统。” 那么你可能可以为这个特定的需求设计一个简单的,高效又低成本的系统。
数据库与大数据一直是技术圈的两个常青领域。PC 时代诞生了最早的关系型数据库,之后数据类型越来越多,出现了各种非关系型数据库。云时代拉开序幕的同时,“大数据”一词也被广泛使用,涵盖海量数据的采集、处理、存储、分析和呈现的系列流程。大模型席卷而来的当下,许多数据库、数据分析处理引擎纷纷寻求与 AI 技术的结合点,试图找到更新、更切合未来发展的创新点……
TDengine 是一款开源、云原生的时序数据库,专为物联网、工业互联网、金融、IT 运维监控等场景设计并优化。它能让大量设备、数据采集器每天产生的高达 TB 甚至 PB 级的数据得到高效实时的处理,对业务的运行状态进行实时的监测、预警。
【摘要】Gartner指出赋能边缘是2020年十大战略技术趋势之一,5G加速IoT领域的发展,物联网设备数据的收集,存储和计算需求与日俱增。Apache IoTDB是物联网时序数据收集、存储、管理与分析为一体的的软件系统。Apache IoTDB作为Apache的2020新晋顶级项目,以其出色的表现得到了Apache的认可!目前Apache IoTDB与Hadoop、Spark和Flink等进行了深度集成,可以完全胜任工业物联网领域的海量数据存储、高速数据读取和复杂数据分析的需求。本次分享将为大家对Apache IoTDB的前世今生和核心的技术进行详细介绍.
随着移动互联网、物联网、云计算等信息技术蓬勃发展,数据量呈爆炸式增长。如今我们可以轻易得从海量数据里找到想要的信息,离不开搜索引擎技术的帮助。
随着移动互联网、物联网、云计算等信息技术蓬勃发展,数据量呈爆炸式增长。如今我们可以轻易得从海量数据里找到想要的信息,其中离不开搜索引擎技术的帮助。特别是其中的索引、检索和排序机制,我们无需深入了解背后复杂的信息检索原理,即可实现基本的全文检索功能。数据量达到十亿,百亿规模仍然可以秒级返回检索结果。对于系统容灾、数据安全性、可扩展性、可维护性等我们关注的实际问题,在开源搜索引擎领域排名第一的Elasticsearch里均能得到有效解决。
微博广告基础架构团队负责人、技术专家,商业大数据平台及智能监控平台发起人,目前负责广告核心引擎基础架构、Hubble智能监控系统、商业基础数据平台(D+)等基础设施建设。关注计算广告、大数据、人工智能、高可用系统架构设计、区块链等方向。在加入微博之前,曾就职于百度负责大数据平台建设,曾担任趣点科技联合创始人兼CTO等职位。毕业于西北工业大学,曾在国内外知名期刊发表多篇学术论文,拥有9项发明专利。
时序数据库,全称为时间序列数据库,主要用于处理带时间标签(按照时间的顺序变化,即时间序列化)的数据。这些数据主要由电力行业、化工行业、气象行业、地理信息等各类型实时监测、检查与分析设备所采集、产生。这些工业数据的典型特点是产生频率快(每一个监测点一秒钟内可产生多条数据)、严重依赖于采集时间(每一条数据均要求对应唯一的时间)、测点多信息量大(常规的实时监测系统均有成千上万的监测点,监测点每秒钟都产生数据,每天产生几十GB的数据量)。
前言 随着Devops、云计算、微服务、容器等理念的逐步落地和大力发展,机器越来越多,应用越来越多,服务越来越微,应用运行基础环境越来多样化,容器、虚拟机、物理机不一而足。面对动辄几百上千个虚拟机、容器,数十种要监控的对象,现有的监控系统还能否支撑的住?来自于容器、虚拟机、物理机、网络设备、中间件的指标数据如何采用同一套方案快速、完整的收集和分析告警?怎样的架构、技术方案才更适合如此庞大繁杂的监控需求呢? 上篇文章《建设DevOps统一运维监控平台,先从日志监控说起》主要从日志监控的方面进行了分享,本篇文章
随着大数据时代的发展,诞生了一大批大数据时代下的新数据库产品,如今MongoDB、Redis、HBase这些NoSQL数据库已经成为了互联网开发的新标配,SQL一统江湖的时代不复存在了。
作者:腾讯云 ES 团队 背景概述 当您有日志、监控等持续产生的时序数据存储需求时,通常通过滚动Elasticsearch索引的方式完成,该方式虽然能帮忙您完成基本的数据管理功能,但是仍然需要结合索引模版、索引生命周期管理、索引别名等实现较完整的索引管理,有一定的使用门槛。另外也有一定的索引维护成本,例如需准确的进行索引分片数预估,避免索引分片数不足影响写入可用性、不合理的索引分片数设置导致分片数过多影响集群稳定性,以及索引所在节点故障阻塞写入时需要介入滚动新的索引等问题。 为了解决这些问题,腾讯云Ela
今日有幸受邀参加腾讯云数据库发布会,在其圆桌论坛环节,与几位行业大咖就数据库当下的热点话题,进行了分享。下面将我的一些分享要点,汇集如下。
时序数据,是在一段时间内通过重复测量(measurement)而获得的观测值的集合;将这些观测值绘制于图形之上,它会有一个数据轴和一个时间轴;
万物互联时代,工业物联网产生的数据量比传统的信息化要多数千倍甚至数万倍,并且是实时采集、高频度、高密度,动态数据模型随时可变。传统数据库在对这些数据进行存储、查询、分析等处理操作时捉襟见肘,迫切需要一种专门针对时序数据来做优化的数据库系统,即时间序列数据库。
原创文字,IoTDB 社区可进行使用与传播基于IoTDB 平台的学习和研究_应用_芯动大师_InfoQ写作社区
一、IoTDB的研发背景 (一)IoTDB的发展历程 IoTDB是由清华大学大数据软件团队于2016年开始开发的一个物联网数据库项目,旨在满足大规模物联网和工业物联网应用的数据、存储和分析需求。2018年11月,IoTDB进入了Apache孵化器,开始了它的开源之旅。在孵化期间,IoTDB吸引了来自全球的贡献者和用户,并与其他Apache项目如Spark和Hadoop进行了无缝集成。2020年9月,IoTDB正式成为Apache顶级项目,并获2020年北京市科技进步一等奖。2021年10月,IoTDB受邀参
12 月 3 日、4日,2022 Apache IoTDB 物联网生态大会在线上圆满落幕。大会上发布 Apache IoTDB 的分布式 1.0 版本,并分享 Apache IoTDB 实现的数据管理技术与物联网场景实践案例,深入探讨了 Apache IoTDB 与物联网企业如何共建活跃生态,企业如何与开源社区紧密配合,实现共赢。
大数据前几年各种概念争论很多,NoSQL/NewSQL,CAP/BASE概念一堆堆的,现在这股热潮被AI接过去了。大数据真正落地到车联网,分控,各种数据分析等等具体场景。 概念很高大上,搞得久了就会发现,大部分都还是数据仓库的衍伸,所以我们称呼这个为“新数仓”,我准备写一系列相关的文章,有没有同学愿意一起来的?请联系我。前面有一些相关文章,大家可以看看: 新数仓系列:Hbase周边生态梳理(1) 本文简单梳理下其中一个应用比较广的HBASE的国内开发者现状,可能不全,有更多信息或者纠正的,请给我留言。 1
伴随新能源物联网的发展,生产、分配、消耗等各个方面由设备及传感器所产生的时序数据量越来越大,严重挑战传统的以关系型数据库为核心的解决方案,数据处理性能低下、数据架构臃肿、存储成本高昂等问题频发,如何应对大数据量下的数据存储、查询、分析,成为了能源企业目前迫切需要解决的难点,数字化转型升级迫在眉睫。我所在的公司江苏阿诗特作为一家具有20多年储能逆变器和户用储能研发能力的企业,在此背景下也开始探索数据架构升级的有效路径。
点击关注公众号,Java干货及时送达 来源:www.cnblogs.com/xiaoyuxixi/p/12235979.html 新公司要上监控,面试提到了 Prometheus 是公司需要的监控解决方案,我当然是选择跟风了。 之前主要做的是 Zabbix,既然公司需要 Prometheus,那没办法,只能好好对比一番,了解下,毕竟技多不压身。 但稍稍深入一点,我就体会到了 Prometheus 的优点,总结一下这两种监控方式。 两种监控工具的历史简介 Prometheus Kubernetes 自从
为什么用关系型数据库?最常见的理由是别人在用,所以我也得用,但是这个并不是理由,而是借口。
就在今天,Gartner发布权威报告《Magic Quadrant for Cloud Database Management Systems》称,凭借在产品矩阵、技术性能方面的领先优势,腾讯云数据库正式进入Gartner云数据库管理系统魔力象限,被评为特定领域者。 可能大家不清楚Gartner和它的魔力象限,怎么说呢,在云计算这个圈子,Gartner基本就是电影届的奥斯卡,音乐界的格莱美,总之就是NB!它的魔力象限就是全球范围的金字招牌,是很多企业组织参考决策的重要依据,因此,这次腾讯云数据库的入选也
从容器技术的推广以及 Kubernetes成为容器调度管理领域的事实标准开始,云原生的理念和技术架构体系逐渐在生产环境中得到了越来越广泛的应用实践。在云原生的体系下,面对高度的弹性、动态的应用生命周期管理以及微服务化等特点,传统的监控体系已经难以应对和支撑,因此新一代云原生监控体系应运而生。
TDengine是一个高效的存储、查询、分析时序大数据的平台,专为物联网、车联网、工业互联网、运维监测等优化而设计。您可以像使用关系型数据库MySQL一样来使用它,但建议您在使用前仔细阅读一遍下面的文档,特别是 数据模型 与 数据建模。除本文档之外,欢迎 [下载产品白皮书](https://www.taosdata.com/downloads/TDengine White Paper.pdf)。
5月25日,云+社区技术沙龙-互联网架构成功举办。本期沙龙特邀请腾讯的技术专家分享关于技术架构、落地实践案例、无服务器云函数架构、海量存储系统架构等话题,从技术角度看架构发展,为开发者们带来丰富的实践经验内容,深度揭秘技术架构。下面是朱建平老师关于如何架构海量存储系统的分享。
在过去五年到十年间,以 MySQL、PostgreSQL、Oracle 为代表的 OLTP 数据库,以 GreenPlum、ClickHouse 等为代表的 OLAP 数据库,以及以 Hadoop 为一派的大数据技术三者的应用场景和相互之间的边界非常清晰。但是最近几年,“融合”越来越多地出现在人们视野中。
我们知道zabbix在监控界占有不可撼动的地位,功能强大。但是对容器监控显得力不从心。为解决监控容器的问题,引入了prometheus技术。
领取专属 10元无门槛券
手把手带您无忧上云