导语 | 本文推选自腾讯云开发者社区-【技思广益 · 腾讯技术人原创集】专栏。该专栏是腾讯云开发者社区为腾讯技术人与广泛开发者打造的分享交流窗口。栏目邀约腾讯技术人分享原创的技术积淀,与广泛开发者互启迪共成长。本文作者是腾讯后台开发工程师叶强盛。 引言 这十多年大数据技术蓬勃发展,从市场的表现来看基于大数据的数据存储和计算是非常有价值的,其中以云数据仓库为主打业务的公司Snowflake市值最高(截止当前449亿美元),另一家以湖仓一体为方向公司Databricks估值或达380亿美元;各大伺机而动的云厂
导语 | 分析型数据仓库经历了共享存储、无共享MPP、SQL-on-Hadoop几代架构的演进,随着云计算的普及,传统的数据仓库架构在资源弹性,成本等方面已经很难适应云原生的要求。本文由偶数科技 CEO,腾讯云TVP 常雷在 Techo TVP开发者峰会「数据的冰与火之歌——从在线数据库技术,到海量数据分析技术」 的《新一代云原生数据仓库的应用》演讲分享整理而成,为大家详细剖析新一代云原生数据仓库的架构、原理和实现技术,以及如何充分应用云原生数据仓库的特点来实现云上大数据应用。 点击可观看精彩演讲视频
12月20日,在腾讯2020 Techo Park开发者大会大数据专场上,腾讯云大数据产品总经理聂晶对数据仓库近30年发展历程做出总结,并分享了他对目前行业的认知以及未来发展的判断。聂晶表示,当前技术环境变化飞速,单一主体企业难以应对数仓领域爆发式发展挑战,腾讯云希望通过开放开源的生态给用户带来更为透明和精细化的技术及产品服务,助力企业生产力加速提升。 数据仓库从1991年被正式提出,历经近30年的发展历程,企业对数据仓库的重要性感知愈加强烈,同时数据仓库在企业端越来越走向成熟和理性。 “企业不再停留
2020年12月20日,在腾讯2020 Techo Park开发者大会大数据专场上,腾讯云大数据产品总经理聂晶对数据仓库近30年发展历程做出总结,并分享了他对目前行业的认知以及未来发展的判断。聂晶表示,当前技术环境变化飞速,单一主体企业难以应对数仓领域爆发式发展挑战,腾讯云希望通过开放开源的生态给用户带来更为透明和精细化的技术及产品服务,助力企业生产力加速提升。
一时间,似乎所有与数据库有关的厂商都在提“湖仓一体”,仅从百度新闻搜索查询到权重较高的媒体文章就至少有150多篇。随着企业数字化转型进入深水区,越来越多的企业视“湖仓一体”为数字变革的重要契机,如今湖仓一体受到前所未有的关注。
本期嘉宾 简丽荣 酷克数据联合创始人兼CEO 简丽荣,北京酷克数据科技有限公司联合创始人兼CEO。2008年毕业于清华大学计算机系本科,2010年获得香港科技大学硕士学位,毕业后曾先后在IBM中国研究院、雅虎北京研发中心和Pivotal中国研发中心从事分布式计算相关研发工作。简丽荣是开源数据仓库Greenplum Database的contributor和Apache HAWQ的创始committer,在云计算及数据库领域长期保持着敏锐的洞察力和判断力。 主持人 田超 腾讯云企业中心总经理 田超,腾
在数据大爆炸时代,随着企业的业务数据体量的不断发展,半结构化以及无结构化数据越来越多,传统的数据仓库面临重大挑战。通过以Hadoop, Spark为代表的大数据技术来构建新型数据仓库,已经成为越来越多的企业应对数据挑战的方式。
通过官网我们知道,snova可以使用PostgreSQL工具,因此,如果想要将linux日志导入snova数据仓库,只需要调用 python3 中的 psycopg2 模块(该模块,仅python3.x可用)。
每一个游戏制作者都想制作出一款让玩家满意的游戏。但是作为开发者,如何知道哪些点是让游戏玩家满意的,哪些是不满意的?今天我们就聚焦这些点来进行讨论。
关注腾讯云大学,了解行业最新技术动态 Greenplum 是全球首个开源、多云分布式数据库,2019年被 Gartner 列为全球十大经典和实时数据分析产品中唯一开源数据库。 和腾讯云大学合作的《六节课快速上手Greenplum》已经进行到第五场,在前四场的活动中,来自Greenplum社区和原厂的专家们分别为大家介绍了Greenplum的安装与部署,Greenplum备份、安全与高可用,生态与工具,和快速调优等的干货内容,相关PPT欢迎前往Greenplum中文社区网站下载页面获取。 第五堂课的主题是G
内容来源:2017 年 11 月 18 日,北京偶数科技创始人兼CEO常雷在“第七届数据技术嘉年华”进行《云数据库的本质》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
这十多年大数据技术蓬勃发展,从市场的表现来看基于大数据的数据存储和计算是非常有价值的,其中以云数据仓库为主打业务的公司Snowflake市值最高(截止当前449亿美元),另一家以湖仓一体为方向公司Databricks估值或达380亿美元;各大伺机而动的云厂商也纷纷推出自己的数据湖、云数据仓库、湖仓一体产品。
回顾数据仓库的发展历程,大致可以将其分为几个阶段:萌芽探索到全企业集成时代、企业数据集成时代、混乱时代--"数据仓库之父"间的论战、理论模型确认时代以及数据仓库产品百家争鸣时代。查看原文
数据仓库大家非常熟悉,在1991年出版的“Building the Data Warehouse”,数据仓库之父比尔·恩门首次提出数据仓库的概念,数据仓库是一个面向主题的,集成的,相对稳定的,反映历史变化的数据集合,用于支持管理决策。
近日,由权威机构赛迪顾问主办的“2024IT市场年会”隆重召开,并在会上发布了备受瞩目的“2024IT市场权威榜单”。腾讯云大数据处理套件TBDS凭借其卓越的创新能力和实践案例,荣获两大奖项:
Snowflake 是在 Cloud 之上开发的基于云的数据仓库平台,截至目前,亚马逊网络服务 (AWS)、微软 Azure 和谷歌云等流行的云提供商都在支持 Snowflake。
MPP代表"Massively Parallel Processing",是一种计算机架构,旨在通过分布式处理来实现大规模数据处理和分析。它使用多个处理器或计算节点同时工作,以加快数据处理速度和提高性能。MPP架构通常用于处理海量数据的应用程序,如数据仓库、商业智能和大数据分析。
20世纪90年代,使用MPP架构的Netezza和Teradata的数据库设备对Oracle,IBM和Microsoft在anlytics数据库市场的主导地位提出了挑战,并且随着“大数据”的出现以及带有分布式处理的Hadoop的严峻考验。
作者 | 蔡芳芳 采访嘉宾 | 陈龙 2020 年 9 月,主打云数据仓库产品的硅谷独角兽 Snowflake 正式登陆纳斯达克,首日 IPO 筹资高达 33.6 亿美元,是有记录以来金额最大的软件 IPO,突破了 Uber 2019 年 5 月上市创下的最大规模纪录。 如今,大数据技术早已进入普及期,数据仓库 / 分析领域更是巨头林立,既有传统厂商 Oracle、Teradata,也有开源软件 Hadoop,还有云厂商 AWS Redshift、Google Bigquery,在这样一个竞争环境下
2020 年 9 月,主打云数据仓库产品的硅谷独角兽 Snowflake 正式登陆纳斯达克,首日 IPO 筹资高达 33.6 亿美元,是有记录以来金额最大的软件 IPO,突破了 Uber 2019 年 5 月上市创下的最大规模纪录。 如今,大数据技术早已进入普及期,数据仓库 / 分析领域更是巨头林立,既有传统厂商 Oracle、Teradata,也有开源软件 Hadoop,还有云厂商 AWS Redshift、Google Bigquery,在这样一个竞争环境下,成立于 2012 年的 Snowflake 能脱颖而出实属不易。那么,Snowflake 在数仓技术方面有哪些独到之处?其成功的背后又有哪些技术原因和趋势值得关注?
数字化时代,数据使用场景呈现多元化趋势,数据规模也随之爆发式增长。海量异构数据的爆发式增长,对数据库的存储和计算能力提出了更高的要求。分析型数据库因其在处理海量实时数据时具有优秀的存算和管理能力,近年来赢得了市场的青睐。
当前的大环境和技术氛围,提供给国产化技术厂商一个千载难逢的推广机会,操作系统、数据库、中间件、办公终端各领域,无论是供应商,还是使用者,比以往任何时候都更积极和主动,并且更具成效。
刚刚过去的21世纪的第二个十年,是消费互联网蓬勃发展的十年,也是云计算、大数据、人工智能等新一代信息技术,即“数字化技术”快速崛起的十年。
数据猿导读 随着数据量的不断增大、接入的系统越来越多,系统加工效率逐步降低,满足内部数据分析和监管机构的监管数据不断增加的需求,农业银行在2013年开始建设完全自主可控的大数据平台。 本篇案例为数据猿
随着云时代的到来,数据库也开始拥抱云数据库时代,各类数据库系统(OLTP、OLAP、NoSQL等)在各内外云平台(AWS、Azure、阿里云)百花齐放,有开源的MySQL、PostgreSQL、MongoDB,传统数据库厂商的SQLServer、Oracle,云厂商自研的Aurora、Redshift、PolarDB、AnalyticDB、AzureSQL等。有些数据库还处于Cloud Hosting阶段,仅仅是将原有架构迁移到云主机上,利用了云的资源。有些数据库则已经进入了Cloud Native阶段,基于云平台IAAS层的基础设施,构建弹性、serverless、数据共享等能力。
人类的发展,离不开信息的积累。从原始社会的口口相传,到需要将信息记录下来。那么如何记载信息呢?于是有了最早的记载方式——结绳记事。
前面已经给大家讲了《从0到1搭建大数据平台之数据采集系统》、《从0到1搭建大数据平台之调度系统》,今天给大家讲一下大数据平台计算存储系统。大数据计算平台目前主要都是围绕着hadoop生态发展的,运用HDFS作为数据存储,计算框架分为批处理、流处理。
6月5日,“国产数据库硬核技术沙龙-TDSQL-A技术揭秘”如约而至。5位腾讯云技术大咖分别从整体技术架构、列式存储及相关执行优化、集群数据交互总线、Fragment执行框架/查询分片策略/子查询框架以及向量化执行引擎等多个方面对TDSQL-A进行了深入解读。以下带来腾讯云数据库技术总监李跃森老师的在线分享。 1 TDSQL-A产品定位 TDSQL-A是腾讯基于PostgreSQL自主研发的分布式超大规模在线关系型数据仓库,业务场景针对于在线高性能数据分析。 TDSQL-A有四个主要特点: 无共享MP
技术最终为业务服务,没必要一定要追求先进性,各个企业应根据自己的实际情况去选择自己的技术路径。 它不一定具有通用性,但从一定程度讲,这个架构可能比BAT的架构更适应大多数企业的情况,毕竟,大多数企业,数据没到那个份上,也不可能完全自研,商业和开源的结合可能更好一点,权当抛砖引玉。 大数据平台架构的层次划分没啥标准,以前笔者曾经做过大数据应用规划,也是非常纠结,因为应用的分类也是横纵交错,后来还是觉得体现一个“能用”原则,清晰且容易理解,能指导建设,这里将大数据平台划分为“五横一纵”。
数据仓库选型是整个数据中台项目的重中之重,是一切开发和应用的基础。而数据仓库的选型,其实就是Hive数仓和非Hive数仓的较量。Hive数仓以Hive为核心,搭建数据ETL流程,配合Kylin、Presto、HAWQ、Spark、ClickHouse等查询引擎完成数据的最终展现。而非Hive数仓则以Greenplum、Doris、GaussDB、HANA(基于SAP BW构建的数据仓库一般以HANA作为底层数据库)等支持分布式扩展的OLAP数据库为主,支持数据ETL加工和OLAP查询。
Snova为您提供简单、快速、经济高效的PB级云端数据仓库解决方案。借助于Snova,您可以在数分钟内创建拥有数百节点的企业级云端数据仓库,并高效的完成日常维护工作;也可以使用丰富的Postgre开源生态工具,实现对Snova中海量数据的即时查询分析、ETL处理及可视化探索;还可以借助其云端数据无缝集成特性,轻松分析位于COS、CDB、ES等数据引擎上的PB级数据。
<数据猿导读> 中国移动大数据总架构师段云峰在2016年中国信息通信大数据大会上发表了以“无所不在的大数据分析”为主题的演讲.他主要给大家分享了中国移动在系统架构方面的内容,包括移动大数据演进的历程,
初次了解BI(商业智能),还是在刚开始实习那年,我所在的经分项目组,有两个开发组是专门做BI的。BI很多时候会被人认为是“写SQL”的,刚开始我也抱着疑惑的心态:写个SQL怎么就成商业智能了?
12月6日-7日,由InfoQ 中国主办的综合性技术盛会QCon全球软件开发大会深圳站召开。QCon 内容源于实践并面向社区,演讲嘉宾依据热点话题,面向资深的技术团队负责人、架构师、工程总监、开发人员分享技术创新和实践。 在 QCon 盛会上,腾讯云大数据专家工程师陈龙为大家带来了题为《看云上 ClickHouse 如何做计算存储分离》的分享,以下是分享整理全文。 各位朋友大家好,我是陈龙,我今天给大家分享的内容是:看云上 ClickHouse 如何做计算存储分离。 首先介绍下我自己,我来自腾讯云
随着数字经济的蓬勃发展,产业数字化进程持续推进,数据技术拥有了广泛的端到端应用场景,而借助数据技术可以实现从数据到信息、从信息到知识、从知识到决策的转换,助力实体经济的创新发展。IDC预计,到2026年,全球大数据市场的IT总投资规模将增至4491.1亿美元,实现约15.6%的复合增长率。
以数据洞察力为导向的企业 每年增长 30% 以上。数据有助于公司排除决策错误。团队可以利用数据结果来决定构建哪些产品、增加哪些特性以及追求哪些增长。
12月6日-7日,由InfoQ 中国主办的综合性技术盛会QCon全球软件开发大会深圳站召开。QCon 内容源于实践并面向社区,演讲嘉宾依据热点话题,面向资深的技术团队负责人、架构师、工程总监、开发人员分享技术创新和实践。
存算分离,现在已经成为云原生数据库的标配, 开始大规模流行。存算分离后, 进一步使计算单元和存储单元解耦,每个单元可以实现单独的动态扩缩容,并且可以通过冗余配置,实现对单点故障的容忍度, 可以说是近年来数据库市场上的一大进步。
随着数据量的增大,传统数据库如Oracle、MySQL、PostgreSQL等单实例模式将无法支撑大量数据的处理,数据仓库采用分布式技术成为自然的选择。 6.2.1 MPP的概念 在讨论MPP DB之前,我们先把MPP本身的概念搞清楚。MPP是系统架构角度的一种服务器分类方法。 从系统架构来看,目前的商用服务器大体可以分为三类,即对称多处理器结构(Symmetric Multi-Processor,SMP)、非一致存储访问结构(Non-Uniform Memory Access,NUMA),以及海量并行处
腾讯大数据最近做了几件事,上线了一个官方网站http://data.qq.com/,将TDW(腾讯大数据库仓库)开源了,封闭的企鹅难得开放了一回。大数据网站上有一些资料,我看到一个叫Hermes爱马仕的系统挺有意思的,今天介绍下。 关于实时分析系统我前面写个几篇文章分析,包括《实时分析系统(HIVE/HBASE/IMPALA)浅析》《MPP DB 是 大数据实时分析系统 未来的选择吗?》《一套数据,多种引擎(impala/Hive/kylin)》《一套数据,多种引擎续---两种数据格式(Parquet/OR
近日中国民生银行、中国光大银行定向采购华为数据库。项目中标金额分别为 1935 万元、2199 万元。以下为详情,供大家参考。 中国民生银行项目 2021年8月18日,中国民生银行股份有限公司发布《2021年华为数据库软件采购项目》招标公告。 采购内容:拟采购60套GuassDB(DWS)MPP数据库软件的全集团范围内的永久使用授权,包含1年期维保。 2021年9月26日评审结果公示发布,中电金信软件有限公司 1935 万元中标。 中国光大银行项目 2021年8月13日,中国光大银行发布《华为高斯数据库
近日,腾讯云联手宇信科技,共同完成了信贷平台、数据中台、手机银行等核心金融业务的联合解决方案,以及双向适配认证、深度测试和优化工作,并已在某头部农商行、某头部城商行投产运行。未来,双方将在信贷系统和国产数据库的深度适配测试、监管报送国产化联合方案、云原生PaaS平台双向适配认证等领域持续推进合作。 腾讯云TDSQL&宇信科技 新一代智能信贷服务平台V5.0深度适配 TDSQL是腾讯云自主研发的企业级分布式数据库,提供业界领先的高可用、计算存储分离、数据仓库等能力,具备智能运维平台等标准统一的产品服务方案,可
近日,偶数科技对外宣布已完成近 2 亿元的 B+ 轮融资,这是继红点中国、红杉中国、金山云之后的第四轮融资。据悉,本轮融资由某科技巨头领投,老股东红杉中国和红点中国继续加码。Scale Partners 势能资本为本轮的财务顾问。 偶数科技是一家总部位于北京的云原生数据仓库和 AI 产品公司,其自主研发的 OushuDB 是一款高性能云原生数据仓库,可以用于构建企业核心数仓、数据集市、实时数仓和湖仓一体数据平台。现阶段,偶数科技已经服务大型金融、电信、政府、能源等众多领域的国内外客户,其中包括建设银行、中
近日,腾讯云联手宇信科技,共同完成了信贷平台、数据中台、手机银行等核心金融业务的联合解决方案,以及双向适配认证、深度测试和优化工作,并已在某头部农商行、某头部城商行投产运行。未来,双方将在信贷系统和国产数据库的深度适配测试、监管报送国产化联合方案、云原生PaaS平台双向适配认证等领域持续推进合作。 新一代智能信贷服务平台V5.0深度适配 TDSQL是腾讯云自主研发的企业级分布式数据库,提供业界领先的高可用、计算存储分离、数据仓库等能力,具备智能运维平台等标准统一的产品服务方案,可满足各行业需求。历时3个多月
2021 Gdevops全球敏捷运维峰会 - 广州站,将在5月28日盛大举办。Gdevops经过创办6年成功举行近20场大会的经验积淀,于本次峰会打磨精选出最贴合当下运维痛难点及运维转型趋势热点的议题,本文带大家先睹为快。 腾讯大讲堂·限时专属优惠 报名 福利一: 扫描下方二维码,关注腾讯大讲堂,回复“Gdevops全球敏捷运维峰会·广州站”,就有机会抽取免费门票 福利二: 限时特价优惠门票有限,码上报名 运维主题看点 讲师介绍:现任职新炬网络副总裁,多年跨国大型IT企业的团队管理、销售和市
当前数据仓库的主流架构:分为两个方向一个是 hadoop 体系,一个是 MPP 数据库
开源数据库中有一堆冤家,我想大家都知道,那就是MySQL与Postgre SQL。两个派系的恩怨情仇从何而来,今天我们将从非技术的角度来进行分析。 本文仅代表个人观点,如有不同意见欢迎交流。 说明:本文主要的关注点,是MySQL与PostgreSQL的非技术比较。 简单评价 MySQL流行较多,PostgreSQL功能更全面。其主要原因是,MySQL很早的时候,就支持主从复制,在互联网起步(2000年后第一次互联网大潮)的时候,被广泛使用。PostgreSQL到2010年左右才首次支持主从复制,无法作为互
在以上的架构中可以看出Greenplum主要是由Master和Segment组成的,Master承担生成查询计划并派发汇总执行结果,Segment是执行查询计划及数据储存管理。集群可以直接加载外部的数据。
大数据经过反复炒作之后,慢慢的降温下来。大家不再大谈几个v了,落地到企业会发现,大部分场景还是传统的数据仓库的替换。今天梳理下数据仓库的使用场景,以及需要的技术。 1,先谈下数据仓库准确的概念是什么? 数据仓库 ,由数据仓库之父比尔·恩门(Bill Inmon)于1990年提出,主要功能仍是将组织透过资讯系统之联机事务处理(OLTP)经年累月所累积的大量资料,透过数据仓库理论所特有的资料储存架构,作一有系统的分析整理,以利各种分析方法如联机分析处理(OLAP)、数据挖掘(Data Mining)之进行
从系统架构来看,目前的商用服务器大体可以分为三类,即对称多处理器结构 (SMP : Symmetric Multi-Processor) ,非一致存储访问结构 (NUMA : Non-Uniform Memory Access) ,以及海量并行处理结构 (MPP : Massive Parallel Processing) 。它们的特征分别描述如下:
领取专属 10元无门槛券
手把手带您无忧上云