Created with Raphaël 2.2.0 开始 选择正交变换,把时域信号转变为变换域信号 变换后的信号用其能量的平方根归一化 采用某一自适应算法进行滤波 结束
在计算机监控软件中,滤波算法可是个非常重要的技术,它的任务是处理监控数据里烦人的噪声和那些没用的东西,然后提高数据的质量和准确性。对于电脑监控软件来说,滤波算法的性能分析和优化也是至关重要的,这两个可是能让软件跑得更快、更稳定的关键。下面就来给大家介绍一下相关的性能分析与优化方法:
引导图滤波器是一种自适应权重滤波器,能够在平滑图像的同时起到保持边界的作用,具体公式推导请查阅原文献《Guided Image Filtering》以及matlab源码:http://kaimingh
单片机主要作用是控制外围的器件,并实现一定的通信和数据处理。但在某些特定场合,不可避免地要用到数学运算,尽管单片机并不擅长实现算法和进行复杂的运算。下面主要是介绍如何用单片机实现数字滤波。
中国自动化学会围绕「深度与宽度强化学习」这一主题,在中科院自动化所成功举办第 5 期智能自动化学科前沿讲习班。
一阶滤波,又叫一阶惯性滤波,或一阶低通滤波。是使用软件编程实现普通硬件RC低通滤波器的功能。
摘 要: 无线充电Qi协议提出发射器和接收器通过频率调制(FSK)方式进行正向通信,进而建立完整的通信状态控制。接收器可采用测宽法进行频率解调,然而由于电磁耦合变化、负载变化、载波占空比变化、测量量化等引起的误差,该方法无法满足实际应用的要求。该文针对传统测宽法抗干扰能力弱的问题,提出一种窗口滤波算法,通过参考相邻脉冲频率确定当前脉冲的有效频率,极大地提高了测宽法的抗干扰能力。经实例分析,改进后的测宽法抗干扰能力强、逻辑简单,为无线充电正向通信FSK解调提供一种可行的方法。
惯性传感器在航空航天系统中主要用于姿态控制和导航。微机电系统的进步促进了微型惯性传感器的发展,该装置进入了许多新的应用领域,从无人驾驶飞机到人体运动跟踪。在捷联式 IMU 中,角速度、加速度、磁场矢量是在传感器固有的三维坐标系中测量的数据。估计传感器相对于坐标系的方向,速度或位置,需要对相应的传感数据进行捷联式积分和传感数据融合。在传感器融合的研究中,现已提出了许多非线性滤波器方法。但是,当涉及到大范围的不同的动态/静态旋转、平移运动时,由于需要根据情况调整加速度计和陀螺仪融合权重,可达到的精度受到限制。为克服这些局限性,该项研究利用人工神经网络对常规滤波算法的优化和探索。
图像预处理算法的好坏直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,为了获取高质量的数字图像,很多时候都需要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。
移动机器人定位是确定其在未知环境中所处位置的过程,是实现移动机器人自动导航能力的关键。依据机器人所采用传感器类型的不同,其定位方式有所不同。目前应用较广泛的传感器有里程计、超声波、激光器、摄像机、红外
本文主要提出了一个基于纯MLP架构的序列化推荐模型,其通过可学习滤波器对用户序列进行编码,在8个序列化推荐数据集上超越了Transformer等模型。
Y值越大,越稀释边缘像素的差异,各个点的权重就更接近,可以想象:当Y无限大时,每个点的权重几乎等于1,就没有保边的效果
卡尔曼滤波(Kalman Filtering)是一种用于状态估计和信号处理的全局最优滤波器。它基于状态空间模型,通过将观测数据和模型进行融合,实现对未知变量和噪声的估计。在Matlab中,我们可以使用内置的kalman滤波函数来实现Kalman滤波算法。 本文将介绍如何在Matlab中使用Kalman滤波器对数据进行滤波和估计。
传统的中值滤波算法在椒盐噪声的去除领域有着比较广泛的应用,其具有较强的噪点鉴别和恢复能力,也有比较低的时间复杂度:其基本思想是采用像素点周围邻接的若干像素点的中值来代替被污染的像素点;但也存在一定的缺陷,随着图像被污染程度的加深,此方法恢复的图像细节模糊、边缘损失也会越严重。
(本文为笔者早期所写,当时对卡尔曼滤波器理解尚未透彻,如今回顾,该模型还有所缺陷,推荐读者看卡尔曼的推导过程或者B站大佬Dr_CAN的空间)
滤波算法是一类用于处理信号和图像中噪声的算法。它们通常通过在信号或图像上应用一个滤波器来实现这一目的。常见的滤波算法包括均值滤波、中值滤波、高斯滤波等。
来源丨https://zhuanlan.zhihu.com/p/279602383
《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科。以下是小编为大家精心准备的:,欢迎参考阅读!
WWW 2022已公布录用论文,接收323篇/投稿1822篇,录用率为17.7%,完整录用论文列表见https://www2022.thewebconf.org/accepted-papers/
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。
基本原理 关于机器人运动控制系统架构,在《ros by example》 chapter 7一章第二节中介绍了控制机器人的5个层次,从低到高依次是:motor controllers anddrivers-> ROS base controller ->Frame-Base Motion(move_base)->Frame-Base Motion(gmapping + amcl)->Semantic Goals。总结起来如下图所示:
在很多信号处理系统中,并没有信号的先验统计特性,不能使用某一固定参数的滤波器来处理,比如信道均衡、回声消除以及其他因素之间的系统模型等,均采用了调整系数的滤波器,称为自适应滤波器。这样的滤波器结合了允许滤波器系数适应于信号统计特性的算法。
最近在做一个基于蓝牙的室内定位的项目,做了一个三角定位算法,由于室内的环境比较复杂,信号反射折射比较多,很多时候信号的大小(RSSI)跟距离并不是完全一一对应的,可能远的地方信号反而更强,三角质心定位算法就有点不合适了,因此想试用指纹定位算法,看一下指纹定位算法的效果。在此总结一下指纹定位算法。
保边滤波器的代表包括双边滤波、引导滤波,但是这类滤波器有一个问题,它们均将待处理的像素点放在了方形滤波窗口的中心。但如果待处理的像素位于图像纹理或者边缘,方形滤波核卷积的处理结果会导致这个边缘变模糊。
常用的图像处理技术有图像读取,写入,绘图,图像色彩空间转换,图像几何变换,图像形态学,图像梯度,图像边缘检测,图像轮廓,图像分割,图像去噪,图像加水印以及修复水印等
图像处理算法和技术在计算机视觉和图像处理领域发挥着重要作用,通过对图像进行分析、增强和转换,可以提取出有用的信息并解决实际问题。本文将以图像处理算法和技术的应用实践为中心,为你介绍一些常见的图像处理算法和技术,并通过实例展示它们在实际应用中的应用和效果。
近日,第31届中国国际信息通信展览在北京举行,腾讯亮相北斗卫星导航系统高峰论坛,并首次对外展示完整的定位技术能力和产品矩阵。腾讯地图定位产品总监郑为志表示,腾讯基于北斗卫星导航系统以及北斗地基增强系统等基础设施,并依托海量数据、丰富场景,形成了包括网络RTK服务、室外卫星定位、室内网络定位、蓝牙以及UWB定位、多源融合定位等较腾讯之前更完整的定位能力矩阵。
卡尔曼滤波是一种基于概率论和线性代数的算法,用于处理具有随机噪声的动态系统。其基本思想是将系统的状态表示为一个随机变量,并通过观测数据和模型方程来对该随机变量进行估计和预测。
粒子滤波(particle filter)是一种常见的滤波算法,广泛应用于目标跟踪、移动机器人等领域。网络上有不少关于粒子滤波的资料,但大多是直接给出了粒子滤波的相关公式和证明,或较为直观上的解释。作者在学习粒子滤波的过程中对一些概念和操作时常感到突兀,后来发现想要完整了解粒子滤波,需要首先了解前因,逐渐深入才能理解粒子滤波,而不是直接学习粒子滤波这个方法。
在进行AD采样时,常常都会对采样数据进行滤波,以达到更好一点的效果。下面分享几种较简单而常用的滤波算法:
图像滤波是一种非常重要的图像处理技术,本文详细介绍了四种常见的图像滤波算法,并附上源码,包括自适应中值滤波、高斯滤波、双边滤波和导向滤波。
摘要:将视觉SLAM(同步定位与地图创建)方法应用于水下环境时,扬起的沉积物会导致SLAM特征点提取与追踪困难,而且人工光源的光照不均匀还会引起特征点分布不均与数量较少。针对这些问题,设计了一种水下图像半均值滤波除尘与光照均衡化特征增强算法;根据水中杂质的像素特征,按照“检测-滤波”的顺序采取从外至内的半均值滤波过程消除扬起的沉积物在图像内造成的干扰;同时,通过统计光照均匀、充足区域内的像素分布,得到同一地形下不同位置处的环境特征相似的规律,并将其用于求解水下光照模型,将图像还原为光照均衡的状态,以此来增强图像的特征,进而实现更多有效特征点的提取。最后,利用该滤波与增强算法对多种海底地形数据集进行处理,并在ORB-SLAM3算法下测试运行。结果表明,滤波与增强后的数据集能够将特征点提取数量和构建地图的点云数量平均提高200%。综上,图像滤波除尘与特征增强算法能够有效提高视觉SLAM算法的运行效果与稳定性。
双边滤波是一种非线性滤波器,它可以达到保持边缘、降噪平滑的效果。和其他滤波原理一样,双边滤波也是采用加权平均的方法,用周边像素亮度值的加权平均代表某个像素的强度,所用的加权平均基于高斯分布[1]。最重要的是,双边滤波的权重不仅考虑了像素的欧氏距离(如普通的高斯低通滤波,只考虑了位置对中心像素的影响),还考虑了像素范围域中的辐射差异(例如卷积核中像素与中心像素之间相似程度、颜色强度,深度距离等),在计算中心像素的时候同时考虑这两个权重。 公式1a,1b给出了双边滤过的操作,Iq为输入图像,Ipbf为滤波后图像:
高斯滤波是以距离为权重,设计滤波模板作为滤波系数,只考虑了像素间的空间位置上的关系,因此滤波的结果会丢失边缘的信息。
距离上一篇文到现在有十天左右了,现在我又来更新啦!现在正值我们专业课程多的一个学期,还赶上疫情在家学习效率低,所以没能有精力写推文了,不过幸好大家都还在,我会一直更新的。
在获取点云数据时 ,由于设备精度,操作者经验环境因素带来的影响,以及电磁波的衍射特性,被测物体表面性质变化和数据拼接配准操作过程的影响,点云数据中讲不可避免的出现一些噪声。在点云处理流程中滤波处理作为预处理的第一步,对后续的影响比较大,只有在滤波预处理中将噪声点 ,离群点,孔洞,数据压缩等按照后续处理定制,才能够更好的进行配准,特征提取,曲面重建,可视化等后续应用处理,PCL中点云滤波模块提供了很多灵活实用的滤波处理算法,例如:双边滤波,高斯滤波,条件滤波,直通滤波,基于随机采样一致性滤波, PCL中点云滤波的方案 PCL中总结了几种需要进行点云滤波处理情况,这几种情况分别如下: (1) 点云数据密度不规则需要平滑 (2) 因为遮挡等问题造成离群点需要去除 (3) 大量数据需要下采样 (4) 噪声数据需要去除 对应的方案如下: (1)按照给定的规则限制过滤去除点 (2) 通过常用滤波算法修改点的部分属性 (3)对数据进行下采样 双边滤波算法是通过取临近采样点和加权平均来修正当前采样点的位置,从而达到滤波效果,同时也会有选择剔除与当前采样点“差异”太大的相邻采样点,从而保持原特征的目的
其中,横轴表示X[0,0],即位置p; 纵轴表示X[1,0],即速度v 可以看到速度v很快收敛于1.0,这是因为设置delta_t=1,即Z中的数据从0-500,每秒加1,卡尔曼滤波预测的速度与实际速度1.0很好的契合。 并且,我相信如果将横轴展开来看,卡尔曼滤波也对位置的预测具有很好的契合。
最近有点忙,今天水一下。来为大家介绍一个之前看到的一个有趣的常量阶最大值最小值滤波算法,这个算法可以在对每个元素的比较次数不超过3次的条件下获得任意半径区域内的最大值或者最小值,也即是说可以让最大最小值滤波算法的复杂度和半径无关。
图像处理应用是计算机视觉和图像处理领域的关键应用之一,通过对图像进行处理和分析,可以提取有用的信息、改善图像质量、实现目标检测等功能。然而,在实际应用中,优化和改进图像处理应用功能是一个持续的过程。本文将以优化和改进图像处理应用功能为中心,为你介绍一些常见的方法和实践,帮助你提升应用的性能、效果和用户体验。
本文是来自MHV(Mile High Video)2019的演讲,演讲者来自于Twitter公司的Sebastiaan Van Leuven。本次演讲主要讲述如何评价移动端上播放视频的用户体验。
云渲染在现实⽣活中,得到越来越多的应⽤。其中,云游戏是云渲染最为经典的落地场景,多家游戏互动直播平台⽬前已经对接腾讯云云游戏 PaaS 平台,异常⽕爆。另外,万科南头古城云渲染项⽬也是腾讯云云渲染团队完成的。在可见的未来,云渲染将会有更多更有想象力的落地场景。 和直播场景不同,在云渲染的场景中,用户关注的是⼀个按键发出后,到看到操作的响应,总共需要多少的时间,更关注低时延。我们选择 WebRTC 技术作为我们的低延迟⽅案。 WebRTC 使用 UDP 传输,采⽤ NACK 重传来保证可靠传输。比如 S
均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
数据可视化一词缘于Python的流行,在Python中有诸如pyecharts,matplotlib等工具库可以调用,将一堆数据绘制成形象的图表,比如条形图,饼图等等,可以一眼就看出数据的变化趋势。
自从发表了用于验证码图片识别的类(C#代码)后,不断有网友下载这个类后,问如何用于一些特定的验证码。总结一下网友们的提问,很多都是不会从复杂背景中提到干净的字符图片来,这主要就是一个去噪问题,即除去图片上的背景、干扰点、干扰线等信息。这当中要用到很多图像学数学算法,首先声明,本人不是学图像学的,以下方法理论说得不对,敬请多批评指正。 1、如何设前景/背景的分界值 UnCodebase类中有一个GetPicValidByValue( int dgGrayValue) 函数,可以得到前景的有效区域,常有
AI 科技评论消息,CVPR 2019 即将于 6 月在美国长滩召开。今年有超过 5165 篇的大会论文投稿,最终录取 1299 篇。此次,腾讯公司有超过 58 篇论文被本届 CVPR 接收,其中腾讯优图实验室 25 篇、腾讯 AI Lab 33 篇,以下便是对腾讯优图实验室 25 篇被录用论文的详细介绍。
超声波雷达的工作原理是通过超声波发射装置向外发出超声波,到通过接收器接收到发送过来超声波时的时间差来测算距离。
今年CVPR入选论文已公布,全球共有5165篇投稿,1299篇收录,同比去年增长32%(2017年论文录取979篇)。
领取专属 10元无门槛券
手把手带您无忧上云