首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    实战|TensorFlow 实践之手写体数字识别!

    本文的主要目的是教会大家运用google开源的深度学习框架tensorflow来实现手写体数字识别,给出两种模型,一种是利用机器学习中的softmax regression作分类器,另一种将是搭建一个深度神经网络以达到...99%正确率的手写体数字识别模型。...下载后的数据集分为训练集、验证集、测试集(也就是train_data,validation_data,test_dasta,记住,这样的划分很重要,它可以检验我们得到的模型在真实场景下的识别能力)。...可见深度神经网络,在手写体识别项目上表现地相比于softmax regression,效果会好的多的多。...我们学习了在tensorflow中实现softmax regression、一种深度神经网络的过程;简单了解了tensorflow的运行机制和内部参数、函数机构,相信看完大家可以手动设计一个神经网络将识别率继续提高

    1.1K00

    基于OpenCV实现手写体数字训练与识别

    OpenCV实现手写体数字训练与识别 机器学习(ML)是OpenCV模块之一,对于常见的数字识别英文字母识别都可以做到很高的识别率,完成这类应用的主要思想与方法是首选对训练图像数据完成预处理与特征提取...一:数据集 这里使用的数据集是mnist 手写体数字数据集、关于数据集的具体说明如下: 数据集名称 说明 train-images-idx3-ubyte.gz 训练图像28x28大小,6万张 train-labels-idx1...32SC1); return labels; } 二:训练与测试 对上述数据集,我们不使用提取特征方式,而是采用纯像素数据作为输入,分别使用KNN与SVM对数据集进行训练与测试,比较他们最终的识别率...三:应用 训练好的数据保存在本地,初始化加载,使用对象的识别方法就可以预测分类、进行对象识别。当然这么做,还需要对输入的手写数字图像进行二值化、分割、调整等预处理之后才可以传入进行预测。...以下是两个测试图像识别结果: 演示一截屏: ? 演示二截屏: ?

    2.4K60

    机器学习|卷积神经网络(CNN) 手写体识别 (MNIST)入门

    所以文档后面介绍的都是关于监督学习,因为手写体识别需要有一些训练集告诉我这些图像实际上应该是什么数字,不过监督学习的方法也有很多,主要有分类和回归两大类: ?...分类 (Classification): 例如手写体识别,这类问题的特点在于最后的结果是离散的,最后分类的数字只能是 0, 1, 2, 3 而不会是 1.414, 1.732 这样的小数。...回归 (Regression): 例如经典的房价预测,这类问题得到的结果是连续的,例如房价是会连续变化的,有无限多种可能,不像手写体识别那样只有 0-9 这 10 种类别。...这样看来,接下来介绍的手写体识别是一个分类问题。但是做分类算法也非常多,这篇文章要介绍的是应用非常多也相对成熟的神经网络 (Neural Network)。 ?...循环神经网络 (Recurrent Neural Network):比较适用于像声音这样的序列,因此在语言识别领域应用比较多。

    1.3K20

    R︱Softmax Regression建模 (MNIST 手写体识别和文档多分类应用)

    可以支持大部分的多分类问题,其中的两个示例:MNIST手写体识别和多文档分类(Multi-Class DocumentClassification) 的文档如下 二、示例文档 2.1 MNIST手写体识别数据集...MNIST手写体识别的数据集是图像识别领域一个基本数据集,很多模型诸如CNN卷积神经网络等模型都经常在这个数据集上测试都能够达到97%以上的准确率。...Part1、下载和Load数据 MNIST手写体识别的数据集可以直接从网站下载http://yann.lecun.com/exdb/mnist/,一共四个文件,分别下载下来并解压。...利用softmaxreg 包训练一个10分类的MNIST手写体识别的模型,用load_image_file 和load_label_file 来分别读取训练集的图像数据和标签的数据 (Reference...在softmaxreg包中有一个预先训练好的模型:长度为20维的英文词向量的字典,直接用data(word2vec) 调用就可以了。

    1.2K20

    入门项目数字手写体识别:使用Keras完成CNN模型搭建

    在面部识别、自动驾驶、物体检测等领域,CNN被广泛使用,并都取得了最优性能。...对于绝大多数深度学习新手而言,数字手写体识别任务可能是第一个上手的项目,网络上也充斥着各种各样的成熟工具箱的相关代码,新手在利用相关工具箱跑一遍程序后就能立刻得到很好的结果,这时候获得的感受只有一个——...本文将利用Keras和TensorFlow设计一个简单的二维卷积神经网络(CNN)模型,手把手教你用代码完成MNIST数字识别任务,便于理解深度学习的整个流程。 ?...准备数据 模型使用的MNIST数据集,该数据集是目前最大的数字手写体数据集(0~9),总共包含60,000张训练图像和10,000张测试图像,每张图像的大小为28x28,灰度图。...从图中可以看到,左上角是存储在训练集X_train[0]的手写体图像‘5’,y_train[0]表示对应的标签‘5’。

    84810

    手写体 OCR 识别

    Datawhale干货 作者:王浩,结行科技算法工程师 参加了“世界人工智能创新大赛”——手写体 OCR 识别竞赛(任务一),取得了Top1的成绩。...但OCR技术在实际应用中也存在一些问题,在各类凭证字段的识别中,手写体由于其字体差异性大、字数不固定、语义关联性较低、凭证背景干扰等原因,导致OCR识别率准确率不高,需要大量人工校正,对日常的银行录入业务造成了一定的影响...赛题地址:http://ailab.aiwin.org.cn/competitions/65 赛题任务 本次赛题将提供手写体图像切片数据集,数据集从真实业务场景中,经过切片脱敏得到,参赛队伍通过识别技术...即: 输入:手写体图像切片数据集 输出:对应的识别结果 本任务提供开放可下载的训练集及测试集,允许线下建模或线上提供 Notebook 环境及 Terminal 容器环境(脱网)建模,输出识别结果完成赛题...数据规模和内容覆盖 B.数据示例 原始手写体图像共分为三类,分别涉及银行名称、年月日、金额三大类,分别示意如下: 相应图片切片中可能混杂有一定量的干扰信息,分别示例如下: 识别结果 JSON 在训练集中的格式如下

    1.6K30

    TensorFlow从0到1 - 11 - 74行Python实现手写体数字识别

    然而,实现它们并进行复杂的手写体数字识别任务,只需要74行Python代码(忽略空行和注释)。要知道如果采用编程的方法(非学习的方式)来挑战这个任务,是相当艰难的。...本篇将分析这份Python代码“network.py”,它基于NumPy,在对50000张图像学习后,即能够识别0~9手写体数字,正确率达到95%以上。...MNIST 早在1998年,在AT&T贝尔实验室的Yann LeCun就开始使用人工神经网络挑战手写体数字识别,用于解决当时银行支票以及邮局信件邮编自动识别的需求。数据集MNIST由此产生。...而手写体数字识别,也成了机器学习的入门实验案例。 ? 样本图像 如上图所示,MNIST中的图像是灰度图像,像素值为0的表示白色,为1的表示黑色,中间值是各种灰色。...接下来,定义了一个3层的神经网络: 输入层784个神经元(对应28x28的数字手写体图像); 隐藏层30个神经元; 输出层10个神经元(对应10个手写体数字)。

    1.8K60
    领券