首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

获取列包含字符串的numpy数组中的行

,可以通过以下步骤实现:

  1. 导入numpy库:在Python代码中导入numpy库,以便使用其中的函数和方法。
代码语言:python
代码运行次数:0
复制
import numpy as np
  1. 创建numpy数组:使用numpy库的array函数创建一个numpy数组。
代码语言:python
代码运行次数:0
复制
arr = np.array([['apple', 'banana', 'cherry'],
               ['orange', 'banana', 'kiwi'],
               ['apple', 'grape', 'mango']])
  1. 确定目标列:确定包含字符串的目标列的索引或名称。
代码语言:python
代码运行次数:0
复制
target_col = 0  # 假设目标列为第一列
  1. 使用布尔索引:使用布尔索引来筛选出目标列包含指定字符串的行。
代码语言:python
代码运行次数:0
复制
target_str = 'apple'  # 假设要筛选的字符串为'apple'
filtered_rows = arr[arr[:, target_col] == target_str]
  1. 打印筛选结果:打印筛选出的行。
代码语言:python
代码运行次数:0
复制
print(filtered_rows)

完整代码示例:

代码语言:python
代码运行次数:0
复制
import numpy as np

arr = np.array([['apple', 'banana', 'cherry'],
               ['orange', 'banana', 'kiwi'],
               ['apple', 'grape', 'mango']])

target_col = 0
target_str = 'apple'

filtered_rows = arr[arr[:, target_col] == target_str]
print(filtered_rows)

这段代码将输出包含字符串'apple'的行:

代码语言:txt
复制
[['apple' 'banana' 'cherry']
 ['apple' 'grape' 'mango']]

推荐的腾讯云相关产品:腾讯云服务器(CVM)和腾讯云对象存储(COS)。

  • 腾讯云服务器(CVM):提供弹性、可靠、安全的云服务器,可满足各种计算需求。了解更多信息,请访问腾讯云服务器产品介绍
  • 腾讯云对象存储(COS):提供安全、可靠、低成本的云存储服务,适用于存储和处理大规模非结构化数据。了解更多信息,请访问腾讯云对象存储产品介绍
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

动态数组公式:动态获取某列中首次出现#NA值之前一行的数据

标签:动态数组 如下图1所示,在数据中有些为值错误#N/A数据,如果想要获取第一个出现#N/A数据的行上方行的数据(图中红色数据,即图2所示的数据),如何使用公式解决?...图1 图2 如示例图2所示,可以在单元格G2中输入公式: =LET(data,A2:E18,i,MIN(IFERROR(BYCOL(data,LAMBDA(x,MATCH(TRUE,ISNA(x),0...如果想要只获取第5列#N/A值上方的数据,则将公式稍作修改为: =INDEX(LET(data,A2:E18,i,MIN(IFERROR(BYCOL(data,LAMBDA(x,MATCH(TRUE,ISNA...,那么上述公式会自动更新为最新获取的值。...自从Microsoft推出动态数组函数后,很多求解复杂问题的公式都得到的简化,很多看似无法用公式解决的问题也很容易用公式来实现了。

15210
  • Numpy中的数组维度

    ., 23) 进行重新的排列时,在多维数组的多个轴的方向上,先分配最后一个轴(对于二维数组,即先分配行的方向,对于三维数组即先分配平面的方向) # 代码 import numpy as np # 一维数组...a = np.arange(24) print("a的维度:\n",a.ndim) # 现在调整其大小,2行3列4个平面 b = np.reshape(np.arange(24), (2, 3, 4)...) # b 现在拥有三个维度 print("b(也是三维数组):\n",b) # 分别看看每一个平面的构成 print("b的每一个平面的构成:\n") print(b[:, :, 0]) print(...b[:, :, 1]) print(b[:, :, 2]) print(b[:, :, 3]) # 运行结果 a的维度: 1 b(也是三维数组): [[[ 0 1 2 3] [ 4 5...6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]] b的每一个平面的构成: [[ 0 4 8] [

    1.6K30

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...每种方法都有其优点和缺点,因此应根据具体情况使用不同的方法。 点符号 可以键入“df.国家”以获得“国家”列,这是一种快速而简单的获取列的方法。但是,如果列名包含空格,那么这种方法行不通。...图5 获取多列 方括号表示法使获得多列变得容易。语法类似,但我们将字符串列表传递到方括号中。...记住这种表示法的一个更简单的方法是:df[列名]提供一列,然后添加另一个[行索引]将提供该列中的特定项。 假设我们想获取第2行Mary Jane所在的城市。

    19.2K60

    numpy中数组的遍历技巧

    在numpy中,当需要循环处理数组中的元素时,能用内置通函数实现的肯定首选通函数,只有当没有可用的通函数的情况下,再来手动进行遍历,遍历的方法有以下几种 1....print(i) ... 0 1 2 3 4 # 二维数组,每次遍历一行,以列表的形式返回一行的元素 >>> a = np.arange(12).reshape(3, 4) >>> a array([...,所以通过上述方式只能访问,不能修改原始数组中的值。...print(i) ... 0 1 2 3 4 5 6 7 8 9 10 11 3. nditer迭代器 numpy中的nditer函数可以返回数组的迭代器,该迭代器的功能比flat更加强大和灵活,在遍历多维数组时...,通过order参数可以指定遍历的顺序,C表示C语言的风格,优先处理行,F表示Fortran语言的风格,优先处理列,用法如下 >>> a array([[ 0, 1, 2, 3], [ 4

    12.5K10

    numpy中的掩码数组

    numpy中有一个掩码数组的概念,需要通过子模块numpy.ma来创建,基本的创建方式如下 >>> import numpy as np >>> import numpy.ma as ma >>> a...上述代码中,掩藏了数组的前3个元素,形成了一个新的掩码数组,在该掩码数组中,被掩藏的前3位用短横杠表示,对原始数组和对应的掩码数组同时求最小值,可以看到,掩码数组中只有未被掩藏的元素参与了计算。...掩码数组赋予了我们重新选择元素的权利,而不用改变矩阵的维度。...在可视化领域,最典型的应用就是绘制三角热图,代码如下 import matplotlib.pyplot as plt import numpy as np import numpy.ma as ma...在numpy.ma子模块中,还提供了多种创建掩码数组的方式,用法如下 >>> import numpy.ma as ma >>> a array([0, 1, 2, 3, 4]) # 等于2的元素被掩盖

    1.9K20

    Pandas库的基础使用系列---获取行和列

    前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...我们试试看如何将最后一列也包含进来。info = df.iloc[:, [1, 4, -1]]可以看到也获取到了,但是值得注意的是,如果我们使用了-1,那么就不能用loc而是要用iloc。...接下来我们再看看获取指定行指定列的数据df.loc[2, "2022年"]是不是很简单,大家要注意的是,这里的2并不算是所以哦,而是行名称,只不过是用了padnas自动帮我创建的行名称。...通常是建议这样获取的,因为从代码的可读性上更容易知道我们获取的是哪一行哪一列。当然我们也可以通过索引和切片的方式获取,只是可读性上没有这么好。

    63700

    【NumPy 数组过滤、NumPy 中的随机数、NumPy ufuncs】

    python之Numpy学习 NumPy 数组过滤 从现有数组中取出一些元素并从中创建新数组称为过滤(filtering)。 在 NumPy 中,我们使用布尔索引列表来过滤数组。...布尔索引列表是与数组中的索引相对应的布尔值列表。 如果索引处的值为 True,则该元素包含在过滤后的数组中;如果索引处的值为 False,则该元素将从过滤后的数组中排除。...为了在我们的计算机上生成一个真正的随机数,我们需要从某个外部来源获取随机数据。外部来源通常是我们的击键、鼠标移动、网络数据等。...print(x) 实例 生成有 3 行的 2-D 数组,每行包含 5 个从 0 到 100 之间的随机整数: from numpy import random x = random.randint...实例 生成包含 5 个随机浮点数的 1-D 数组: from numpy import random x = random.rand(5) print(x) 实例 生成有 3 行的 2-D 数组

    13210

    SQL中的行转列和列转行

    而在SQL面试中,一道出镜频率很高的题目就是行转列和列转行的问题,可以说这也是一道经典的SQL题目,本文就这一问题做以介绍分享。 ? 给定如下模拟数据集,这也是SQL领域经典的学生成绩表问题。...其基本的思路是这样的: 在长表的数据组织结构中,同一uid对应了多行,即每门课程一条记录,对应一组分数,而在宽表中需要将其变成同一uid下仅对应一行 在长表中,仅有一列记录了课程成绩,但在宽表中则每门课作为一列记录成绩...02 列转行:union 列转行是上述过程的逆过程,所以其思路也比较直观: 行记录由一行变为多行,列字段由多列变为单列; 一行变多行需要复制,列字段由多列变单列相当于是堆积的过程,其实也可以看做是复制;...这里重点解释其中的三个细节: 在每个单门课的衍生表中,例如这句:SELECT uid, '语文' as course, `语文` as score,用单引号包裹起来的课程名称是字符串常量,比如语文课的衍生表中的课程名都叫语文...这实际上对应的一个知识点是:在SQL中字符串的引用用单引号(其实双引号也可以),而列字段名称的引用则是用反引号 上述用到了where条件过滤成绩为空值的记录,这实际是由于在原表中存在有空值的情况,如不加以过滤则在本例中最终查询记录有

    7.2K30

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...,"D","E"]] 结果: 2.iloc方法 iloc方法是通过索引行、列的索引位置[index, columns]来寻找值 (1)读取第二行的值 # 读取第二行的值,与loc方法一样 data1...3, 2:4]中的第4行、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    10K21

    SQL 中的行转列和列转行

    行转列,列转行是我们在开发过程中经常碰到的问题。行转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 的运算符PIVOT来实现。用传统的方法,比较好理解。...但是PIVOT 、UNPIVOT提供的语法比一系列复杂的SELECT…CASE 语句中所指定的语法更简单、更具可读性。下面我们通过几个简单的例子来介绍一下列转行、行转列问题。...这也是一个典型的行转列的例子。...上面两个列子基本上就是行转列的类型了。但是有个问题来了,上面是我为了说明弄的一个简单列子。...实际中,可能支付方式特别多,而且逻辑也复杂很多,可能涉及汇率、手续费等等(曾经做个这样一个),如果支付方式特别多,我们的CASE WHEN 会弄出一大堆,确实比较恼火,而且新增一种支付方式,我们还得修改脚本如果把上面的脚本用动态

    5.5K20

    numpy中数组操作的相关函数

    在numpy中,有一系列对数组进行操作的函数,在使用这些函数之前,必须先了解以下两个基本概念 副本 视图 副本是一个数组的完整拷贝,就是说,先对原始数据进行拷贝,生成一个新的数组,新的数组和原始数组是独立的...数组的转置 数组转置是最高频的操作,在numpy中,有以下几种实现方式 >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9,...,而且在对应的轴上尺寸相同,特别需要注意,即使只是在二维数组的基础上增加1行或者1列,也要将添加项调整为二维数组。...数组的排序,去重 # 获取唯一的元素 >>> a = np.array([1, 1, 1, 2, 2, 3, 3, 3, 3]) >>> np.unique(a) array([1, 2, 3]) #...中,实现同一任务的方式有很多种,牢记每个函数的用法是很难的,只需要挑选几个常用函数数量掌握即可。

    2.1K10

    在VimVi中删除行、多行、范围、所有行及包含模式的行

    使用linux服务器,免不了和vi编辑打交道,命令行下删除数量少还好,如果删除很多,光靠删除键一点点删除真的是头痛,还好Vi有快捷的命令可以删除多行、范围。 删除行 在Vim中删除一行的命令是dd。...删除行范围 删除一系列行的语法如下: :[start],[end]d 例如,要删除从3到5的行,您可以执行以下操作: 1、按Esc键进入正常模式。 2、输入:3,5d,然后按Enter键以删除行。...删除包含模式的行 基于特定模式删除多行的语法如下: :g//d 全局命令(g)告诉删除命令(d)删除所有包含的行。 要匹配与模式不匹配的行,请在模式之前添加感叹号(!): :g!...//d 模式可以是文字匹配或正则表达式,以下是一些示例: :g/foo/d-删除所有包含字符串“foo”的行,它还会删除“foo”嵌入较大字词(例如“football”)的行。 :g!.../foo/d-删除所有不包含字符串“foo”的行。 :g/^#/d-从Bash脚本中删除所有注释,模式^#表示每行以#开头。 :g/^$/d-删除所有空白行,模式^$匹配所有空行。

    107.7K32

    js中如何判断数组中包含某个特定的值_js数组是否包含某个值

    array.indexOf 判断数组中是否存在某个值,如果存在返回数组元素的下标,否则返回-1 let arr = ['something', 'anything', 'nothing',...anything']; let index = arr.indexOf('nothing'); # 结果:2 array.includes(searchElement[, fromIndex]) 判断一个数组是否包含一个指定的值...numbers.includes(8); # 结果: true result = numbers.includes(118); # 结果: false array.find(callback[, thisArg]) 返回数组中满足条件的第一个元素的值...item.id == 3; }); # 结果: Object { id: 3, name: "nothing" } array.findIndex(callback[, thisArg]) 返回数组中满足条件的第一个元素的索引...方法,该方法返回元素在数组中的下标,如果不存在与数组中,那么返回-1; 参数:searchElement 需要查找的元素值。

    18.5K40

    详解Numpy中的数组拼接、合并操作

    水平拼接,沿着行的方向,对列进行拼接vstack垂直拼接,沿着列的方向,对行进行拼接dstack沿着第三个轴(深度方向)进行拼接column_stack水平拼接,沿着行的方向,对列进行拼接row_stack...垂直拼接,沿着列的方向,对行进行拼接r_垂直拼接,沿着列的方向,对行进行拼接c_水平拼接,沿着行的方向,对列进行拼接0....维度和轴在正确理解Numpy中的数组拼接、合并操作之前,有必要认识下维度和轴的概念:ndarray(多维数组)是Numpy处理的数据类型。...在一维空间中,用一个轴就可以表示清楚,numpy中规定为axis 0,空间内的数可以理解为直线空间上的离散点 (x iii, )。...Python中可以用numpy中的ndim和shape来分别查看维度,以及在对应维度上的长度。

    11.2K30

    numpy数组中冒号和负号的含义

    numpy数组中":"和"-"的意义 在实际使用numpy时,我们常常会使用numpy数组的-1维度和":"用以调用numpy数组中的元素。也经常因为数组的维度而感到困惑。...总体来说,":"用以表示当前维度的所有子模块 "-1"用以表示当前维度所有子模块最后一个,"负号用以表示从后往前数的元素,-n即是表示从后往前数的第n个元素"#分片功能 a[1: ] 表示该列表中的第1...个元素到最后一个元素,而,a[ : n]表示从第0个元素到第n个元素(不包括n) import numpy as np POP_SIZE = 3 total_size = 10 idx = np.arange...[7 8 9] # good_idx_2 [0 1 2 3 4 5 6] # good_idx_3 [3 4 5 6 7 8 9] # good_idx_4 [0 1 2] 测试代码 import numpy...s print('b1[:-1]\n', b1[:-1]) # 从最外层的模块中分解出除最后一个子模块后其余的模块 # b1[:-1] # [[[ 0 1 2] # [ 3 4 5]

    2.2K20

    js判断数组中是否包含某个指定元素的个数_js 数组包含某个元素

    查找的元素。 start:可选的整数参数。规定在字符串中开始检索的位置。 它的合法取值是 0 到 stringObject.length - 1。...Mango","Banana","Orange","Apple"]; var a = fruits.indexOf("Apple",4); // 6 注:string.indexOf()返回某个指定的字符串值在字符串中首次出现的位置...查找字符串最后出现的位置,使用 lastIndexOf() 方法。 方法二:arr.find() 数组实例的find()用于找出第一个符合条件的数组元素。...find() 方法为数组中的每个元素都调用一次函数执行: 当数组中的元素在测试条件时返回 true 时, find() 返回符合条件的元素,之后的值不会再调用执行函数。...findIndex() 方法为数组中的每个元素都调用一次函数执行: 当数组中的元素在测试条件时返回 true 时, findIndex() 返回符合条件的元素的索引位置,之后的值不会再调用执行函数。

    11.3K30
    领券