首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

获取Pandas列和行的合计

是通过使用Pandas库中的sum()函数和axis参数实现的。

如果想要获取DataFrame中每列的合计值,可以使用sum()函数,并将axis参数设置为0。下面是具体步骤:

步骤1:导入Pandas库

代码语言:txt
复制
import pandas as pd

步骤2:创建DataFrame 假设有一个名为df的DataFrame,其中包含多个列(column_1、column_2、column_3等)和多行数据。

代码语言:txt
复制
df = pd.DataFrame({'column_1': [1, 2, 3],
                   'column_2': [4, 5, 6],
                   'column_3': [7, 8, 9]})

步骤3:获取每列的合计值 使用sum()函数,并将axis参数设置为0,即df.sum(axis=0)。

代码语言:txt
复制
column_sums = df.sum(axis=0)

步骤4:输出合计值

代码语言:txt
复制
print(column_sums)

输出结果将是每列的合计值。

如果想要获取DataFrame中每行的合计值,可以将axis参数设置为1。以下是具体步骤:

步骤1和步骤2同上。

步骤3:获取每行的合计值 使用sum()函数,并将axis参数设置为1,即df.sum(axis=1)。

代码语言:txt
复制
row_sums = df.sum(axis=1)

步骤4:输出合计值

代码语言:txt
复制
print(row_sums)

输出结果将是每行的合计值。

关于Pandas的更多信息,可以参考腾讯云的产品介绍链接: Pandas介绍

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pandas基础使用系列---获取

前言我们上篇文章简单介绍了如何获取数据,今天我们一起来看看两个如何结合起来用。获取指定指定数据我们依然使用之前数据。...我们先看看如何通过切片方法获取指定所有数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,位置我们使用类似python中切片语法。...大家还记得它们区别吗?可以看看上一篇文章内容。同样我们可以利用切片方法获取类似前4这样数据df.iloc[:, :4]由于我们没有指定名称,所有指标这一也计算在内了。...接下来我们再看看获取指定指定数据df.loc[2, "2022年"]是不是很简单,大家要注意是,这里2并不算是所以哦,而是名称,只不过是用了padnas自动帮我创建名称。...通常是建议这样获取,因为从代码可读性上更容易知道我们获取是哪一哪一。当然我们也可以通过索引切片方式获取,只是可读性上没有这么好。

60500

pandaslociloc_pandas获取指定数据

大家好,又见面了,我是你们朋友全栈君 实际操作中我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到两种方法:ilocloc。...目录 1.loc方法 (1)读取第二值 (2)读取第二值 (3)同时读取某行某 (4)读取DataFrame某个区域 (5)根据条件读取 (6)也可以进行切片操作 2.iloc方法 (1)...读取第二值 (2)读取第二值 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过名称或标签来索引 iloc:通过索引位置来寻找数据 首先,我们先创建一个...,"D","E"]] 结果: 2.iloc方法 iloc方法是通过索引索引位置[index, columns]来寻找值 (1)读取第二值 # 读取第二值,与loc方法一样 data1...columns进行切片操作 # 读取第2、3,第3、4 data1 = data.iloc[1:3, 2:4] 结果: 注意: 这里区间是左闭右开,data.iloc[1:

8.8K21
  • 用过Excel,就会获取pandas数据框架中值、

    在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运pandas库提供了获取值、简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例中为45。 图3 使用pandas获取 有几种方法可以在pandas获取。...要获取前三,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用交集。...接着,.loc[[1,3]]返回该数据框架第1第4。 .loc[]方法 正如前面所述,.loc语法是df.loc[],需要提醒(索引)可能值是什么?...图11 试着获取第3Harry Poter国家名字。 图12 要获得第2第4,以及其中用户姓名、性别年龄,可以将列作为两个列表传递到参数“row”“column”位置。

    19.1K60

    Bootstrap

    在Bootstrap中,(Row)(Column)是构建响应式网格布局核心组件。它们允许我们创建灵活网格系统,以便在不同屏幕尺寸下进行布局。...(Column)(Column)是子元素,用于将内容放置在网格布局中特定位置。通过指定宽度偏移量,我们可以控制内容在不同屏幕尺寸下布局。...在这种情况下,.col-6表示每个占据一半宽度,因此左侧右侧内容将并排显示。Bootstrap使用12网格系统。...除了指定宽度,我们还可以使用偏移量(Offset)排序(Ordering)类来调整列布局。偏移量类用于在行中创建空白,而排序类用于控制顺序。...每个包含一个卡片(.card),其中有博客文章标题内容。通过使用,我们可以创建具有自适应布局网格系统,以适应不同屏幕尺寸设备。

    2K30

    pandas遍历Dataframe几种方式

    遍历数据有以下三种方法: 简单对上面三种方法进行说明: iterrows(): 按遍历,将DataFrame每一迭代为(index, Series)对,可以通过row[name]对元素进行访问。...itertuples(): 按遍历,将DataFrame每一迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高。...iteritems():按遍历,将DataFrame每一迭代为(列名, Series)对,可以通过row[index]对元素进行访问。...示例数据 import pandas as pd inp = [{‘c1’:10, ‘c2’:100}, {‘c1’:11, ‘c2’:110}, {‘c1’:12, ‘c2’:123}] df =...(index) # 输出每行索引值 1 2 row[‘name’] # 对于每一,通过列名name访问对应元素 for row in df.iterrows(): print(row[‘c1

    7.1K20

    Pandas vs Spark:获取指定N种方式

    导读 本篇继续Pandas与Spark常用操作对比系列,针对常用到获取指定多种实现做以对比。...无论是pandasDataFrame还是spark.sqlDataFrame,获取指定一是一种很常见需求场景,获取指定之后可以用于提取原数据子集,也可以根据该衍生其他。...由于Pandas中提供了两种核心数据结构:DataFrameSeries,其中DataFrame任意一任意一都是一个Series,所以某种意义上讲DataFrame可以看做是Series容器或集合...:Spark中DataFrame每一类型为Column、行为Row,而PandasDataFrame则无论是还是,都是一个Series;Spark中DataFrame有列名,但没有索引,...03 小结 本文分别列举了PandasSpark.sql中DataFrame数据结构提取特定多种实现,其中Pandas中DataFrame提取一既可用于得到单列Series对象,也可用于得到一个只有单列

    11.5K20

    使用pandas筛选出指定值所对应

    pandas中怎么样实现类似mysql查找语句功能: select * from table where column_name = some_value; pandas获取数据有以下几种方法...布尔索引 该方法其实就是找出每一中符合条件真值(true value),如找出列A中所有值等于foo df[df['A'] == 'foo'] # 判断等式是否成立 ?...这个例子需要先找出符合条件所在位置 mask = df['A'] == 'foo' pos = np.flatnonzero(mask) # 返回是array([0, 2, 4, 6, 7])...df.index=df['A'] # 将A列作为DataFrame索引 df.loc['foo', :] # 使用布尔 df.loc[df['A']=='foo'] ?...数据提取不止前面提到情况,第一个答案就给出了以下几种常见情况:1、筛选出列值等于标量,用== df.loc[df['column_name'] == some_value] 2、筛选出列值属于某个范围内

    19K10

    python中pandas库中DataFrame对操作使用方法示例

    pandasDataFrame时选取: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...类型 data[['w','z']] #选择表格中'w'、'z' data[0:2] #返回第1到第2所有,前闭后开,包括前不包括后 data[1:2] #返回第2,从0计,返回是单行...,这种轴索引包含索引器series不能采用ser[-1]去获取最后一个,这会引起歧义。...6所在第4,有点拗口 Out[31]: d three 13 data.ix[data.a 5,2:4] #选择'a'中大于5所在第3-5(不包括5) Out[32]: c...github地址 到此这篇关于python中pandas库中DataFrame对操作使用方法示例文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    SQL中转列转行

    而在SQL面试中,一道出镜频率很高题目就是转列转行问题,可以说这也是一道经典SQL题目,本文就这一问题做以介绍分享。 ? 给定如下模拟数据集,这也是SQL领域经典学生成绩表问题。...01 转列:sum+if 在行转列中,经典解决方案是条件聚合,即sum+if组合。...其基本思路是这样: 在长表数据组织结构中,同一uid对应了多行,即每门课程一条记录,对应一组分数,而在宽表中需要将其变成同一uid下仅对应一 在长表中,仅有一记录了课程成绩,但在宽表中则每门课作为一记录成绩...由多行变一,那么直觉想到就是要groupby聚合;由一变多,那么就涉及到衍生提取; 既然要用groupby聚合,那么就涉及到将多门课成绩汇总,但现在需要不是所有成绩汇总,而仍然是各门课独立成绩...02 转行:union 转行是上述过程逆过程,所以其思路也比较直观: 记录由一变为多行,字段由多变为单列; 一变多行需要复制,字段由多变单列相当于是堆积过程,其实也可以看做是复制;

    7.1K30

    SQL 中转列转行

    转列,转行是我们在开发过程中经常碰到问题。转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 运算符PIVOT来实现。用传统方法,比较好理解。...但是PIVOT 、UNPIVOT提供语法比一系列复杂SELECT…CASE 语句中所指定语法更简单、更具可读性。下面我们通过几个简单例子来介绍一下转行、转列问题。...这也是一个典型转列例子。...上面两个列子基本上就是转列类型了。但是有个问题来了,上面是我为了说明弄一个简单列子。...这个是因为:对升级到 SQL Server 2005 或更高版本数据库使用 PIVOT UNPIVOT 时,必须将数据库兼容级别设置为 90 或更高。

    5.5K20

    怎么才能用pandas删除第一第0

    一、前言 前几天在Python白银交流群【unswervingly】问了一个Pandas处理问题,提问截图如下: 问题截图如下: 二、实现过程 这里【dcpeng】给了一个思路,在读取时候使用参数skiprow...看来这个参数还是给力,主要粉丝自己也有举一反三能力,还是很优秀! 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas处理问题,文中针对该问题给出了具体解析代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【unswervingly】提问,感谢【dcpeng】、【此类生物】、【Engineer】、【鑫】给出思路代码解析,感谢【空翼】、【瑜亮老师】等人参与学习交流。

    9010

    pandas dataframe删除一或一:drop函数

    pandas dataframe删除一或一:drop函数 【知识点】 用法: DataFrame.drop(labels=None,axis=0,index=None,columns=None, inplace...=False) 参数说明: labels 就是要删除行列名字,用列表给定 axis 默认为0,指删除,因此删除columns时要指定axis=1; index 直接指定要删除 columns...直接指定要删除 inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后新dataframe; inplace=True,则会直接在原数据上进行删除操作,删除后无法返回。...因此,删除行列有两种方式: 1)labels=None,axis=0组合 2)index或columns直接指定要删除 【实例】 # -*- coding: UTF-8 -*- import...pandas as pd df=pd.read_excel('data_1.xlsx') print(df) df=df.drop(['学号','语文'],axis=1) print(df) df=df.drop

    4.5K30

    Pandas 查找,丢弃值唯一

    前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找丢弃 DataFrame 中值唯一,简言之,就是某数值除空值外,全都是一样,比如:全0,全1,或者全部都是一样字符串如...:已支付,已支付,已支付… 这些大多形同虚设,所以当数据集很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把缺失值先丢弃,再统计该唯一值个数即可。...代码实现 数据读入 检测值唯一所有并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...值唯一 ” --> “ 除了空值以外唯一值个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我其余文章,提建议,共同进步。

    5.7K21
    领券