首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

获取pandas数据框中每行非零值的列索引

可以使用nonzero函数来实现。nonzero函数返回一个元组,其中包含两个数组,分别表示非零值的行索引和列索引。

以下是一个完善且全面的答案:

在pandas中,可以使用nonzero函数来获取数据框中每行非零值的列索引。nonzero函数返回一个元组,其中包含两个数组,分别表示非零值的行索引和列索引。

具体实现步骤如下:

  1. 导入pandas库:import pandas as pd
  2. 创建一个数据框:df = pd.DataFrame(data)
    • data是一个包含数据的字典或二维数组
  • 使用nonzero函数获取非零值的索引:indices = df.values.nonzero()
    • df.values将数据框转换为二维数组
    • nonzero函数返回一个元组,其中包含两个数组,分别表示非零值的行索引和列索引
  • 根据索引获取非零值的列索引:column_indices = indices[1]
    • indices[1]表示列索引的数组
  • 打印非零值的列索引:print(column_indices)

这样,你就可以获取到pandas数据框中每行非零值的列索引了。

对于腾讯云相关产品的推荐,可以考虑使用腾讯云的云数据库 TencentDB、云服务器 CVM、云函数 SCF 等产品来支持数据存储、计算和函数运行等需求。你可以访问腾讯云官方网站了解更多关于这些产品的详细信息和使用指南。

  • 腾讯云数据库 TencentDB:提供高性能、可扩展的云数据库服务,支持多种数据库引擎,适用于各种应用场景。了解更多信息,请访问:腾讯云数据库 TencentDB
  • 云服务器 CVM:提供弹性、安全、稳定的云服务器实例,可满足不同规模和需求的应用场景。了解更多信息,请访问:云服务器 CVM
  • 云函数 SCF:无服务器计算服务,支持事件驱动的函数计算,可快速构建和部署应用程序。了解更多信息,请访问:云函数 SCF

请注意,以上推荐的腾讯云产品仅供参考,具体选择应根据实际需求和情况进行。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

用过Excel,就会获取pandas数据框架、行和

在Python数据存储在计算机内存(即,用户不能直接看到),幸运pandas库提供了获取值、行和简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例为4行5。 图3 使用pandas获取 有几种方法可以在pandas获取。...获取1行 图7 获取多行 我们必须使用索引/切片来获取多行。在pandas,这类似于如何索引/切片Python列表。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格获取单个单元格,我们需要使用行和交集。...接着,.loc[[1,3]]返回该数据框架第1行和第4行。 .loc[]方法 正如前面所述,.loc语法是df.loc[行,],需要提醒行(索引)和可能是什么?

19.1K60

【Python】基于某些删除数据重复

subset:用来指定特定,根据指定数据去重。默认为None,即DataFrame中一行元素全部相同时才去除。...导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于多组合删除数据重复') #把路径改为数据存放路径 name = pd.read_csv('name.csv...结果和按照某一去重(参数为默认)是一样。 如果想保留原始数据直接用默认即可,如果想直接在原始数据删重可设置参数inplace=True。...原始数据只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据。 想要根据更多数去重,可以在subset添加。...但是对于两中元素顺序相反数据去重,drop_duplicates函数无能为力。 如需处理这种类型数据去重问题,参见本公众号文章【Python】基于多组合删除数据重复。 -end-

19.5K31
  • pandasloc和iloc_pandas获取指定数据行和

    大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到两种方法:iloc和loc。...读取第二行 (2)读取第二行 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过行、名称或标签来索引 iloc:通过行、索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...,"D","E"]] 结果: 2.iloc方法 iloc方法是通过索引行、索引位置[index, columns]来寻找 (1)读取第二行 # 读取第二行,与loc方法一样 data1...3, 2:4]第4行、第5取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    8.8K21

    【Python】基于多组合删除数据重复

    最近公司在做关联图谱项目,想挖掘团伙犯罪。在准备关系数据时需要根据两组合删除数据重复,两中元素顺序可能是相反。...本文介绍一句语句解决多组合删除数据重复问题。 一、举一个小例子 在Python中有一个包含3数据,希望根据name1和name2组合(在两行顺序不一样)消除重复项。...二、基于两删除数据重复 1 加载数据 # coding: utf-8 import os #导入设置路径库 import pandas as pd #导入数据处理库...如需数据实现本文代码,请到公众号回复:“基于多删重”,可免费获取。 得到结果: ?...从上图可以看出用set替换frozense会报不可哈希错误。 三、把代码推广到多 解决多组合删除数据重复问题,只要把代码取两代码变成多即可。

    14.7K30

    Excel公式技巧93:查找某行第一个所在标题

    有时候,一行数据前面的数据都是0,从某开始就是大于0数值,我们需要知道首先出现大于0数值所在单元格。...例如下图1所示,每行数据中非出现位置不同,我们想知道出现单元格对应标题,即第3行数据。 ?...图2 在公式, MATCH(TRUE,B4:M40,0) 通过B4:M4与0比较,得到一个TRUE/FALSE数组,其中第一个出现TRUE就是对应,MATCH函数返回其相对应位置...MATCH函数查找结果再加上1,是因为我们查找单元格区域不是从A开始,而是从B开始。...ADDRESS函数第一个参数值3代表标题行第3行,将3和MATCH函数返回结果传递给ADDRESS函数返回对应标题行所在单元格地址。

    9.2K30

    Pandas速查卡-Python数据科学

    格式字符串, URL或文件. pd.read_html(url) 解析html URL,字符串或文件,并将表提取到数据列表 pd.read_clipboard() 获取剪贴板内容并将其传递给read_table...('1900/1/30', periods=df.shape[0]) 添加日期索引 查看/检查数据 df.head(n) 数据前n行 df.tail(n) 数据后n行 df.shape() 行数和数...) 所有唯一和计数 选择 df[col] 返回一维数组col df[[col1, col2]] 作为新数据返回 s.iloc[0] 按位置选择 s.loc['index_one'] 按索引选择...=n) 删除所有小于n个行 df.fillna(x) 用x替换所有空 s.fillna(s.mean()) 将所有空替换为均值(均值可以用统计部分几乎任何函数替换) s.astype(float...df.describe() 数值汇总统计信息 df.mean() 返回所有平均值 df.corr() 查找数据之间相关性 df.count() 计算每个数据数量 df.max

    9.2K80

    数据处理是万事之基——python对各类数据处理案例分享(献给初学者)

    Pandas模块处理两个重要数据结构是:DataFrame(数据)和Series(系列),DataFrame(数据)就是一个二维表,每代表一个变量,每行为一次观测,行列交叉单元格就是对应,...数据有行和索引,能帮助我们快速地按索引访问数据某几行或某几列,可以对行或操作。...首先安装pandas包: 案例1:创建一个数据 说明:v_data变量赋值是后面的数据,通过df=pd.DataFrame(v_data)构造函数生成数据并赋值给df,构造函数里有很多参数可以应用...执行后结果: 案例2:Series(系列),其实就是一个一维数组,属于同类型进行多次观测后记录结果。它服从某种分布,默认情况下系列索引是自增负整数列。...3:读取E:/test/sale.xcel文件 程序如下: 程序执行后结果通过print()函数查看结果输出到窗口: 案例4:重命名上面的数据文件变量名time改为sale_time 程序执行后查看结果

    1.6K10

    004.python科学计算库pandas()

    ()函数,它获取一个pandas series并返回一系列True和False age = titanic_survival["Age"] # 使用loc获取数据切片,包括两端索引对应数据...# 获取符合this_class数据Fare pclass_fares = pclass_rows["Fare"] # 求平均数并赋值到字典 fares_by_class...pivot表级别将存储在结果DataFrame索引和列上索引对象(层次索引) # index 告诉方法按哪个分组 # values 是我们要应用计算(可选地聚合) #...---- loc import pandas titanic_survival = pandas.read_csv("titanic_train.csv") # 获取第84行数据Age (loc...索引下标从0开始) row_index_83_age = titanic_survival.loc[83, "Age"] # 获取第767行数据Pclass (loc索引下标从0开始) row_index

    65920

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    3、导入表格 默认情况下,文件第一个工作表将按原样导入到数据。 使用sheet_name参数,可以明确要导入工作表。文件第一个表默认为0。...可以用工作表名字,或一个整数值来当作工作表index。 ? 4、使用工作表列作为索引 除非明确提到,否则索引会添加到DataFrame,默认情况下从0开始。...使用index_col参数可以操作数据索引,如果将0设置为none,它将使用第一作为index。 ?...11、在Excel复制自定义筛选器 ? 12、合并两个过滤器计算结果 ? 13、包含Excel功能 ? 14、从DataFrame获取特定 ?...五、数据计算 1、计算某一特定 输出结果是一个系列。称为单列数据透视表: ? 2、计数 统计每每行NA单元格数量: ? 3、求和 按行或求和数据: ? 为每行添加总: ?

    8.4K30

    数据科学学习手札06)Python在数据操作上总结(初级篇)

    Python 本文涉及Python数据,为了更好视觉效果,使用jupyter notebook作为演示编辑器;Python数据相关功能集成在数据分析相关包pandas,下面对一些常用关于数据知识进行说明...pd.DataFrame()常用参数: data:可接受numpyndarray,标准字典,dataframe,其中,字典可以为Series,arrays,常数或列表 index:数据索引...2.数据框内容索引 方式1: 直接通过名称调取数据 data['c'][2] ?...,储存对两个数据重复联结键进行重命名后缀,默认为('_x','_y') indicator:是否生成一_merge,来为合并后每行标记其中数据来源,有left_only,right_only...method控制插方式,默认为'ffill',即用上面最近缺省来填充下面的缺失位置 df.isnull():生成与原数据形状相同数据数据中元素为判断每一个位置是否为缺失返回bool

    14.2K51

    《Python for Excel》读书笔记连载12:使用pandas进行数据分析之理解数据

    默认情况下,它们返回沿轴axis=0系列,这意味着可以获得统计信息: 如果需要每行统计信息,使用axis参数: 默认情况下,缺失不包括在描述性统计信息(如sum或mean),这与Excel...为此,首先按洲对行进行分组,然后应用mean方法,该方法将计算每组均值,自动排除所有数字: 如果包含多个,则生成数据框架将具有层次索引,即我们前面遇到多重索引: 可以使用pandas提供大多数描述性统计信息...例如,下面是如何获得每组最大和最小之间差值: df.groupby(["continent"]).agg(lambdax: x.max() - x.min()) 在Excel获取每个组统计信息常用方法是使用透视表...下面的数据框架数据组织方式与数据记录典型存储方式类似,每行显示特定地区指定水果销售交易: 要创建数据透视表,将数据框架作为第一个参数提供给pivot_table函数。...最后,margins与Excel总计(GrandTotal)相对应,即如果不使用margins和margins_name方式,则Total和行将不会显示: 总之,数据透视意味着获取(在本例

    4.2K30

    时间序列数据处理,不再使用pandas

    维度:多元序列 ""。 样本:和时间。在图(A),第一周期为 [10,15,18]。这不是一个单一,而是一个列表。...比如一周内商店概率预测,无法存储在二维Pandas数据,可以将数据输出到Numpy数组。...数据分成训练数据("实时")和测试数据("实时"),如下图所示。...将图(3)宽格式商店销售额转换一下。数据每一都是带有时间索引 Pandas 序列,并且每个 Pandas 序列将被转换为 Pandas 字典格式。...在沃尔玛商店销售数据,包含了时间戳、每周销售额和商店 ID 这三个关键信息。因此,我们需要在输出数据创建三:时间戳、目标值和索引

    18510

    Python3分析CSV数据

    2.3选取特定 索引 #!...,提供iloc函数根据行索引选取一个单独行作为索引,提供reindex函数为数据重新生成索引。...基本过程就是将每个输入文件读取到pandas数据,将所有数据追加到一个数据列表,然后使用concat 函数将所有数据连接成一个数据。...如果你需要平行连接数据,那么就在concat 函数设置axis=1。除了数据pandas 还有一个数据容器,称为序列。你可以使用同样语法去连接序列,只是要将连接对象由数据改为序列。...因为输出文件每行应该包含输入文件名,以及文件销售额总计和均值,所以可以将这3 种数据组合成一个文本,使用concat 函数将这些数据连接成为一个数据,然后将这个数据写入输出文件。

    6.7K10

    numpy和pandas库实战——批量得到文件夹下多个CSV文件第一数据并求其最

    2、现在我们想对第一或者第二数据进行操作,以最大和最小求取为例,这里以第一为目标数据,来进行求值。 ?...通常我们通过Python来处理数据,用比较多两个库就是numpy和pandas,在本篇文章,将分别利用两个库来进行操作。...3、其中使用pandas库来实现读取文件夹下多个CSV文件第一数据并求其最大和最小代码如下图所示。 ? 4、通过pandas库求取结果如下图所示。 ?...通过该方法,便可以快速取到文件夹下所有文件第一最大和最小。 5、下面使用numpy库来实现读取文件夹下多个CSV文件第一数据并求其最大和最小代码如下图所示。 ?.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件第一数据最大和最小,当然除了这两种方法之外,肯定还有其他方法也可以做得到,欢迎大家积极探讨

    9.5K20

    懂Excel就能轻松入门Python数据分析包pandas(三):制作成绩条

    看看 Excel 是怎么完成此需求,我们用10条记录做演示: 添加辅助序列,每个数值相隔2(这是因为结果数据每行相隔2行) ---- 在辅助下面,生成序列(结束为上一步序列尾数) 使用 Excel...自带生成系列功能即可 ---- 批量添加标题行 从3开始,每隔3行设置一标题 ---- 去除重复序列行 ---- 最后根据辅助排序,即可得到结果 ---- pandas 做法 pandas...如下: 修改行索引,相当于 Excel 第一步 ---- reindex 可以给予不存在索引,此时那些行会变成空行 相当于 Excel 第二与第四步 ---- 最后,把从索引3开始...,每隔3行赋值标题即可 ---- 完整代码如下: ---- 最后 本文介绍方式实际限制比较大,比如不能按任意维度划分等,并且需要使用者对 pandas 索引有深入理解。...下次将介绍一种通用方式,而且还可以在每个小表格添加汇总行。 如果希望从开始学习 pandas ,那么可以看看我 pandas 专栏。

    69010

    PythonforResearch | 2_数据处理

    : 使用 df[condition] 来请求 Pandas 过滤数据 conditon是每行True或者False序列(因此condition长度必须和 dataframe 行长度相同) 在...Pandas ,只需在整个列上编写一个布尔表达式,就可以为每一行生成 True 或 False Pandas 仅会显示行为True。...我们可以通过两种方式转换数据类型: 循环遍历并分别转换; 使用内置 Pandas 函数一次性转换。...Sapporo6486.026.01.58.0 在索引上 Join 数据集 两个 dataframe 都必须具有与索引相同集(column set) df_auto_p1.set_index('make...) 示例 2:堆叠与去堆叠(Stack and Unstack) Stack和Unstack是高级操作符,用于基于多级索引来重塑数据

    4.1K30

    懂Excel就能轻松入门Python数据分析包pandas(三):制作成绩条

    看看 Excel 是怎么完成此需求,我们用10条记录做演示: 添加辅助序列,每个数值相隔2(这是因为结果数据每行相隔2行) ---- 在辅助下面,生成序列(结束为上一步序列尾数) 使用 Excel...自带生成系列功能即可 ---- 批量添加标题行 从3开始,每隔3行设置一标题 ---- 去除重复序列行 ---- 最后根据辅助排序,即可得到结果 ---- pandas 做法 pandas...如下: 修改行索引,相当于 Excel 第一步 ---- reindex 可以给予不存在索引,此时那些行会变成空行 相当于 Excel 第二与第四步 ---- 最后,把从索引3开始...,每隔3行赋值标题即可 ---- 完整代码如下: ---- 最后 本文介绍方式实际限制比较大,比如不能按任意维度划分等,并且需要使用者对 pandas 索引有深入理解。...下次将介绍一种通用方式,而且还可以在每个小表格添加汇总行。 如果希望从开始学习 pandas ,那么可以看看我 pandas 专栏。

    68520
    领券