参与:Panda 相似度度量和距离度量在整个机器学习领域都是非常基础的概念,数据科学家 Gonzalo Ferreiro Volpi 近日通过浅显易懂的推荐系统示例介绍了这些概念以及它们的计算方式。...在任意类型的算法中,最常见的相似度度量是向量之间夹角的余弦,即余弦相似度。设 A 为用户的电影评分 A 列表,B 为用户的电影评分 B 列表,那么它们之间的相似度可以这样计算: ?...余弦相似度很有优势,因为即使两个相似的文件由于大小而在欧几里德距离上相距甚远(比如文档中出现很多次的某个词或多次观看过同一部电影的某用户),它们之间也可能具有更小的夹角。夹角越小,则相似度越高。...直观而言,我们可以看到用户 b 和 c 的品味相近,而 a 则颇为不同。但常规的余弦相似度却给出了不一样的结果。在这样的案例中,计算调整后余弦相似度能让我们更好地理解用户之间的相近程度。 ?...这里的平均商品评分(mean item rating)是给定商品的所有评分的平均(比较看看我们在用户-用户过滤中看到的表格)。这里要计算的不是用户-用户相似度,而是商品-商品相似度。
相似度计算 inA, inB 对应的是 列向量 欧氏距离:指在m维空间中两个点之间的真实距离,或者向量的自然长度(即改点到原点的距离)。二维或三维中的欧氏距离就是两点之间的实际距离。...余弦相似度:计算的是两个向量夹角的余弦值。...在用户没有评级的所有物品中,对每个物品预计一个可能的评级分数。这就是说:我们认为用户可能会对物品的打分(这就是相似度计算的初衷)。 对这些物品的评分从高到低进行排序,返回前N个物品。...1.基于物品相似度 # 基于物品相似度的推荐引擎 def standEst(dataMat, user, simMeas, item): """standEst(计算某用户未评分物品中,以对该物品和其他物品评分的用户的物品相似度...的调用,该函数对给定用户给定物品构建了一个评分估计值 def svdEst(dataMat, user, simMeas, item): """svdEst(计算某用户未评分物品中,以对该物品和其他物品评分的用户的物品相似度
算法特点 TFIDF的计算非常依赖分词结果,如果分词出错,统计值的意义会大打折扣 每个词对于每篇文档有不同的TFIDF,所以不能脱离数据讨论TFIDF 假如只有一篇文本,不能计算TFIDF 类别数据均衡很重要...搜索引擎 对于已有的所有网页,计算每个网页中词的TFIDF值 对输入query进行分词 对于文档D,计算query中的词在文档D中TFIDF值总和作为query和文档的相关性得分 2....文本相似度计算 对所有文本计算TFIDF后,从每个文本选取TFIDF较高的前n个词,得到一个词的集合S 对于每篇文本D,计算S中每个词的词频,将其作为文本的向量 通过计算向量夹角余弦值得到向量相似度,作为文本相似度...的劣势 受分词效果影响大 词与词之间没有语义相似度 没有语序信息(词袋模型) 无法完成机器翻译、实体挖掘等复杂任务 样本不均衡会对结果有很大影响 类内样本间分布不被考虑【比如一个领域有4篇文本,有些词只在某篇文章出现...,其他文章没有出现,但是在计算TFIDF时会将这4篇文本当成一个大的字符串,导致这种特殊词TFIDF很难反映出来】
资料参考这里 - 皮尔逊相关系数 皮尔逊相关系数可以用来度量两个向量之间的相似度,比欧氏距离好的一点是它对用户评级不敏感,比如某个狂躁者对所有电影评分都是5,一个忧郁者对所有电影评分都是1,皮尔逊相关系数会认为这两个向量相等...余弦相似度就是计算两个向量夹角的余弦值,如果夹角为90度,则相似度为0;如果方向相同,相似度为1。因为余弦值的范围也是-1~1,所以需要用同样的方法进行归一化。...# 计算某个物品和所有其他物品的相似度,进行累加,连评分也累加,最后用累加的总评分/总相似度得到预测该用户对新物品的评分 # data_mat:物品-用户矩阵 # user:用户编号 # item:要预测评分的物品编号...整个过程的作用就是从两个物品列中晒出两物品都被评分的行的下标,用于相似度计算。...1的参数从大到小排序,取前N个 ---- 评价 由于推荐引擎建好后既没有预测的目标值,也没有用户来调查他们对推荐的满意程度,所以常常将某些已知的评分值去掉,然后对它们进行预测,计算预测值和真实值之间的差异
*1 在降维数据集上,计算A和B的相似度Similarity。...如何计算两个矢量(也可以看成2个点)的相似度。 如何计算2个矢量的相似度(Similarity) 先解决简单的问题。相似度是一个0到1的值。可以选择下面的方法来计算。 方法1:计算欧氏距离相似度。...统计方法中求两组数据的相关度, 这两个点的correlationValue Similarity = correlationValue / 2 + 0.5 方法3:计算角度的相似度。...计算两个点的角度,求余弦值([-1, 1]), 角度越接近0,越相似。 求两个点的角度的余弦值cosineValue....对于商品A和商品B,可以看作为两列数据,我们在这两列中,找出两个数据都不为0的行。 比如:表1中商品1和商品2,只要看4,5两行数据就可以。 这个方法的问题是 每次计算都需要寻找相关数据。
视角一:矩阵视角 在脑中想象一个二维的表格,每一行代表一个用户,每一列代表一个物品,表格里的每一个点代表用户对物品的操作,这个操作可以是评分,点击,点赞。其中,有些格子记录了行为,有些格子是空的。...换一个方向,用户对物品的评分等于该用户对其他物品的评分按物品相似加权平均值,这就是item-base的协同过滤。...度量用户之间的相似度,把矩阵的一行——对物品的评分向量作为该用户的表示向量,那么用户之间可以计算向量的距离,可以选择任何距离公式,如余弦距离,皮尔森距离。对于物品之间的相似度,换一个方向即可。...和上面的距离不同的,这个差值可以想象成物理中的位移,带着符号的。推荐时,某用户对于某个物品的评分,等于某用户对其他物品评分加上这个位移,再进行平均得到的平均评分。...和上面的item-base一样的,都是列向量计算相似度,只不过相似度由距离变成了位移。这就是著名的Slope-One算法。 物品直接的相似度,除了上面的启发式
技术框架——基于图结构的聚类方法 基于图结构的日志聚类方法,包括基于文本分词、向量相似度以及最大连通子图等方法,对日志进行聚类并获取特征库;根据特征库中的类别特征对海量日志进行类别标记。...构建最大连通子图,将向量化后的日志映射为图中一个点,计算点之间的相似度;若若两个日志向量相似,则日志向量之间存在一条边。...: 计算日志向量和特征库中各类别特征的相似度;若日志向量和特征符合相似度阈值要求,则将该日志标记为第labeli类,并输出携带标记的日志 若日志向量与特征库中所有的特征都不相似,则将日志存放于故障知识库...3.3.3 向量空间余弦相似度 除了最长公共子序列的方法用于判定日志相似关系外,也可以采用诸如余弦相似度的计算方法。...余弦相似度(Cosine Similarity)用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似。
假设我们有一些用户已经表达了他们对某些书籍的偏好,他们越喜欢某本书,对这本书的评分也越高(评分范围是1分到5分)。我们可以在一个矩阵中重现他们的这种偏好,用行代表用户,用列代表书籍。 ?...可以在一个单独的维度中绘制用户间的余弦相似性。 更常见的情况下,我们可以计算出每名用户与所有用户的相似程度,并在相似性矩阵中表现出来(图三)。...与之前类似,我们以书籍作为喜爱者的向量(或数组),将其与余弦相似度函数相对比,从而揭示出某本书籍与其他书籍之间的相似程度。...书籍通过所阅读用户的评价来表现。通过余弦相似度指标(0-1)来进行对比,相似度越高,两本书就越相似。 我们还可以在相似矩阵中展示出所有书籍彼此间的相似程度(图六)。...假设我们有一些用户已经表达了他们对某些书籍的偏好,他们越喜欢某本书,对这本书的评分也越高(评分范围是1分到5分)。我们可以在一个矩阵中重现他们的这种偏好,用行代表用户,用列代表书籍。 ?
我们现在做数据分析的时候,不可避免地会与文本数据打交道,今天跟大家分享在数据分析中,如何挖掘出相似的文本。 本文从提出问题,到解决问题,再到算法原理三个方面来介绍。 1....提出问题 假设在一个电商APP里,我们想要找出某款商品评价里,关于“快递很差” 的评论,该怎么做? 如果只用字符串匹配的方式,你可能会遍历所有的评论,判断每条评论里是否包含“快递很差”字符串。...所以,index[vec_lsi]其实是计算向量之间的相似度,这里用的方法是余弦相似度。结果越靠近1说明query与该评论越相似。 下面按照相似度倒排,输出与query相似的评论。...上面我们提到用余弦相似度计算向量相似度。...在高中数学中,两个向量的余弦相似度其实就是两个向量的夹角 夹角0度时,两向量重合(相等),相似度为1 夹角90度时,两向量垂直(不相关),相似度为0 夹角180度时,两向量反向,相似度为-1 到这里,基于
皮尔逊相关系数.jpg 资料参考这里 1、皮尔逊相关系数 皮尔逊相关系数可以用来度量两个向量之间的相似度,比欧氏距离好的一点是它对用户评级不敏感,比如某个狂躁者对所有电影评分都是5,一个忧郁者对所有电影评分都是...余弦相似度就是计算两个向量夹角的余弦值,如果夹角为90度,则相似度为0;如果方向相同,相似度为1。因为余弦值的范围也是-1~1,所以需要用同样的方法进行归一化。...一般评分预估算法流程图.PNG # 计算某个物品和所有其他物品的相似度,进行累加,连评分也累加,最后用累加的总评分/总相似度得到预测该用户对新物品的评分 # data_mat:物品-用户矩阵 # user...整个过程的作用就是从两个物品列中晒出两物品都被评分的行的下标,用于相似度计算。...1的参数从大到小排序,取前N个 评价 由于推荐引擎建好后既没有预测的目标值,也没有用户来调查他们对推荐的满意程度,所以常常将某些已知的评分值去掉,然后对它们进行预测,计算预测值和真实值之间的差异。
b.欧几里得距离是数据上的直观体现,看似简单,但在处理一些受主观影响很大的评分数据时,效果则不太明显;比如,U1对Item1,Item2 分别给出了2分,4分的评价;U2 则给出了4分,8分的评分。...《数据挖掘导论》中给了一个很形象的图来说明相关度大小与相关系数之间的联系: 由上图可以总结,当相关系数为1时,成为完全正相关;当相关系数为-1时,成为完全负相关;相关系数的绝对值越大,相关性越强;...但从评分上看X似乎不喜欢2这个 内容,而Y则比较喜欢,余弦相似度对数值的不敏感导致了结果的误差,需要修正这种不合理性就出现了调整余弦相似度,即所有维度上的数值都减去一个均值,比如X和Y的评分均值都是3,...那么如果用欧式距离计算相似度,a和b的相似度就比a和c的相似度高,而如果用余弦计算,则答案反之。 那么欧式距离和余弦相似度的区别是什么呢?...如某T恤从100块降到了50块(A(100,50)),某西装从1000块降到了500块(B(1000,500)),那么T恤和西装都是降价了50%,两者的价格变动趋势一致,可以用余弦相似度衡量,即两者有很高的变化趋势相似度
(补充:确定要保留的奇异值的数目有很多启发式的策略,其中一个做法就是保留矩阵中90%的能量信息,先将所有的奇异值求其平方和计算出总能量信息,再按照从大到小的顺序将奇异值的平方和累加到大于等于总值的90%...(1)相似度 假设有一个用户和电影的数据集,我们可以将用户和电影的对应关系看成一个矩阵,如下图所示,行代表用户,列表示电影,矩阵的元素中0表示用户没有看过,1-5表示用户对这部电影的喜爱程度,值越大代表用户越喜欢这部电影...算法实现: 【3】余弦相似度(cosine similarity ) 计算的是两个向量夹角的余弦值,两个向量之间的夹角为: 余弦相似度的取值范围也在-1到+1之间,因此借助0.5...——基于相似度计算③对这些电影的评分从高到低进行排序,返回前N个item。...【3】推荐实现 这里还是用到了协同过滤里面的推荐算法,只是将相似度的计算模块替换成了基于SVD的相似度计算模块。
一、余弦相似度的原理 在利用sql实现余弦相似度匹配之前,先讲一讲实现余弦相似度的原理,相信搞清楚原理之后,你可以用多种方法计算出两个向量之间的余弦相似度。...这样就将第三列 field3 的文本分类数据转化为数据1和0,接下来就可以计算相似度了。...2.相似度计算 2.1.点积的计算 想要计算余弦相似度,先要计算两个向量的点积与模,表 table_b 中的 field1、field2 和 field3 可以分别看做是三个向量,则由点积计算的公式可以知道他们的点积为... SUM 对所有行的平方值进行求和,最后使用 SQRT 函数(求平方根函数)计算出总和的平方根,也就是 field1 这个 “向量” 的模,通过 AS field1_norm 给结果列命名为 field1...,不过需要注意的是,这里的相似度只是用余弦相似度公式计算出来的数值而已,而使用的也并不是真正的向量,只是将sql中的字段转换为类似向量的一种形式而已,所以仍要注意的是,这种方法只针对数值型数据可行,使用之前尤其要注意这一点
最近在做以图搜图的功能,在评价两个图像相似性时候,尝试了这两种指标,两者有相同的地方,就是在机器学习中都可以用来计算相似度,但是两者的含义有很大差别,以我的理解就是: 前者是看成坐标系中两个点...,来计算两点之间的距离; 后者是看成坐标系中两个向量,来计算两向量之间的夹角。...数据项A和B在坐标图中当做点时,两者相似度为距离dist(A,B),可通过欧氏距离(也叫欧几里得距离)公式计算: ? 当做向量时,两者相似度为cosθ,可通过余弦公式计算: ?...50块(A(100,50)),某西装从1000块降到了500块(B(1000,500)) 那么T恤和西装都是降价了50%,两者的价格变动趋势一致,余弦相似度为最大值,即两者有很高的变化趋势相似度 但是从商品价格本身的角度来说...,两者相差了好几百块的差距,欧氏距离较大,即两者有较低的价格相似度 总结 对欧式距离进行l2归一化等同于余弦距离!
https://github.com/lukewhyte/textpack 将讨论的主题: 使用TF-IDF和N-Grams构建文档术语矩阵 使用余弦相似度计算字符串之间的接近度 使用哈希表将发现转换为电子表格中的...“组”列 在本教程中,将使用美国劳工部工资盗窃调查的这个数据集。...步骤二:使用余弦相似度计算字符串之间的接近度 余弦相似度是0和1之间的度量,用于确定类似字符串的长度,而不管它们的长度如何。 它测量多维空间中字符串之间角度的余弦。...在Python中计算余弦相似度 可以使用scikit-learn来计算余弦相似度。...这将返回具有余弦相似度值的成对矩阵,如: 然后将通过相似性阈值(例如0.75或0.8)过滤此矩阵,以便对认为代表相同实体的字符串进行分组。
本文接下来将重点介绍基于余弦复杂度的文本相似度比较算法,和适用于海量数据的simhash文本相似度算法,并给予一定的工程实现方案。...余弦复杂度 对于多个不同的文本或者短文本对话消息要来计算他们之间的相似度如何,一个好的做法就是将这些文本中词语,映射到向量空间,形成文本中文字和向量数据的映射关系,再通过计算几个或者多个不同的向量的差异的大小...由此,我们就得到了文本相似度计算的处理流程是: 找出两篇文章的关键词; 每篇文章各取出若干个关键词,合并成一个集合,计算每篇文章对于这个集合中的词的词频; 生成两篇文章各自的词频向量; 计算两个向量的余弦相似度...区块链中的数据区块顺序相连构成了一个不可篡改的数据链条,时间戳为所有的交易行为贴上了一套不讲课伪造的真是标签,这对于人们在现实生活中打击假冒伪劣产品大有裨益; " + "市场分析指出,整体而言,区块链技术目前在十大金融领域显示出应用前景...注意二: 另外一点需要需要注意的是,simhash的优点是适用于高维度的海量数据处理,当维度降低,如短文本的相似度比较,simhash并不合适,以我们计算余弦相似度的文本为例, S1: "为什么我的眼里常含泪水
到底什么是相似度呢 在推荐系统中,近邻推荐的核心就是相似度计算方法的选择,由于近邻推荐并没有采用最优化思路,所以效果通常取决于矩阵的量化方式和相似度的选择。...在近邻推荐中,最常用的是相似度计算方法是余弦相似度,事实上,除了余弦相似度,还有其他的计算方法,比如:欧式距离、修正余弦相似度、皮尔逊相关系数、杰卡德(Jaccard)相似度。...例如:用户A对 a、b 两部电影的评分分别是 1 分和 2 分,用户B对两部电影的评分分别是 4 分 和 5 分,计算两个用户向量的余弦相似度,即 [1, 2] 和 [4, 5],结果为 0.98,说明这两个用户比较相似...修正后的余弦相似度在计算时,会将向量中的每个维度的元素减去该维度对应的均值作为计算值。...皮尔逊相关系数 皮尔逊相关系数衡量的是两个变量之间的线性关系。 ? 可以看出,皮尔逊相关系数会将原始的向量将去该向量的平均值,修正后的余弦相似度会将原始的向量中的值减去每列的平均值。
像 Milvus[3] 这样的向量数据库允许你比较任何你可以向量化的数据。你甚至可以在你的 Jupyter Notebook[4] 中做到这一点。但是 向量相似性搜索[5] 是如何工作的呢?...在这篇文章中,我们将涵盖: 向量相似度度量 L2 或欧几里得距离 L2 距离是如何工作的? 何时应该使用欧几里得距离? 余弦相似度 余弦相似度是如何工作的? 何时应该使用余弦相似度?...想象一下,对于两个向量,将每个向量中的数字按水平方向平方,之后相加求和。 接着,对这两个和求平方根,然后将它们相乘,称这个结果为“y”。我们将余弦距离的值定义为“x”除以“y”。...内积就像欧几里得距离和余弦相似度的混合体。当涉及到归一化数据集时,它等同于余弦相似度,因此内积适用于归一化或非归一化数据集。它是一个比余弦相似度更快的选项,也是一个更灵活的选项。...向量相似度搜索度量总结 在这篇文章中,我们了解了三种最有用的向量相似度搜索度量:L2(也称为欧几里得)距离、余弦距离和内积。每种度量都有不同的使用场景。欧几里得距离用于我们关心大小的差异。
其中行向量代表某个用户对所有标的物的评分向量,列向量代表所有用户对某个标的物的评分向量。有了行向量和列向量,我们就可以计算用户与用户之间、标的物与标的物之间的相似度了。...正因为矩阵是稀疏的,会方便我们进行相似度计算及为用户做推荐。 ? 图2:用户对标的物的操作行为矩阵 相似度的计算可以采用cosine余弦相似度算法来计算两个向量 ?...用户u对标的物s的喜好度sim(u,s)可以采用如下公式计算,其中U是与该用户最相似的用户集合(我们可以基于用户相似度找到与某用户最相似的K个用户), ? 是用户 ?...相似度 我们仔细看一下上述公式,公式的分子就是下图矩阵中对应的i列和j列中同一行中的两个元素(红色矩形中的一对元素)相乘,并且将所有行上第i列和第j列的元素相乘得到的乘积相加(这里其实只需要考虑同一行对应的...其实,计算两个向量相似度的方式非常多,cosine余弦是被证明在很多场景效果都不错的一个算法,但并不是所有场景cosine余弦都是最好的,需要针对不同场景做尝试和对比。
将向量的计算过程带入式中,可以得到这两条向量之间的余弦相似度: 余弦相似度的数值范围也就是余弦值的范围,即 [-1, 1] ,这个值越高也就说明相似度越大。...可以看到,这两条向量之间的相似度非常接近1,可以说是非常相似的。也可以想象到,在三维空间中,这两条向量的差距其实并不是非常大,这也从侧面印证了余弦相似度的数值含义。...5.杰卡德距离 杰卡德Jaccard相似系数计算数据集之间的相似度,计算方式为:数据集交集的个数和并集个数的比值。...对于二值变量,谷本系数等价于杰卡德距离: tanimoto coefficient 对于二值变量,谷本系数值域为 0 到+1(+1 的相似度最高) 7.超结构 超结构superstructure主要用来计算某化学结构与其超结构的相似度...8.子结构 子结构substructure主要用来计算某化学结构与其子结构的相似度,值越小则相似度越大 子结构的公式可表示为: substructure 其中 分子式 B 是分子式 A 的子结构。
领取专属 10元无门槛券
手把手带您无忧上云