首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

计算pandas中两列的行数

在pandas中,可以使用shape属性来获取DataFrame或Series的行数和列数。如果要计算两列的行数,可以使用以下步骤:

  1. 导入pandas库:import pandas as pd
  2. 创建DataFrame或Series对象,假设为df
  3. 使用shape属性获取DataFrame或Series的行数和列数:rows, cols = df.shape
  4. 使用iloc方法选择两列,并获取其行数:num_rows = df.iloc[:, [col1_index, col2_index]].shape[0] 其中,col1_indexcol2_index分别是要计算行数的两列的索引。

这样,num_rows就是两列的行数。

以下是一个示例代码:

代码语言:txt
复制
import pandas as pd

# 创建DataFrame对象
data = {'Column1': [1, 2, 3, 4, 5],
        'Column2': ['A', 'B', 'C', 'D', 'E'],
        'Column3': [True, False, True, False, True]}
df = pd.DataFrame(data)

# 获取两列的行数
col1_index = 0  # 第一列的索引
col2_index = 1  # 第二列的索引
num_rows = df.iloc[:, [col1_index, col2_index]].shape[0]

print("两列的行数:", num_rows)

输出结果为:

代码语言:txt
复制
两列的行数: 5

对于pandas的详细介绍和使用方法,可以参考腾讯云的相关文档:pandas库使用指南

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pandas基础:如何计算行数值之差

标签:Python,pandas 有时候,我们想要计算数据框架中行之间差,可以使用dataframe.diff()方法,而不遍历行。...假设有种股票价格:SPY和TSLA。...图1 pandas diff()语法 DataFrame.diff(periods= 1, axis = 0) 在pandas数据框架中计算行之间差异 可以无须遍历行而计算出股票日差价...图3 还可以通过将periods设置为1以外数字来计算非连续行之间差异。 图4 为了帮助可视化上述示例,可以先将向下移动行,然后执行减法。...图5 计算之间差 还可以通过将axis参数设置为1(或“columns”)来计算数据框架之间差异。pandasaxis参数通常具有默认值0(即行)。

4.7K31

Python-科学计算-pandas-03-相乘

"] 对应实物意义是: 对一个商品四处位置测量其某一质量特性,并给出该四处质量标准,上限和下限 本示例,如何判断有几处位置其质量特性是不符合要求,即measure_value值不在公差上下限范围内...,采用算法如下图 希望生成3个新辅助计算(前面2上一篇文章已经介绍过) up_measure每个值=up_tol-measure_value measure_down每个值=measure_value...Part 3:部分代码解读 df["mul"] = df["up_measure"].mul(df["measure_down"]),每行分别相乘相减,生成一个新 df_2 = df[df["mul...df_2.shape获取行数数 shape输出 ?...传送门 Python-科学计算-pandas-02-相减 Python-科学计算-pandas-01-df获取部分数据 本文为原创作品,欢迎分享

7.2K10
  • Pandas实现一数据分隔为

    分割成一个包含个元素列表 对于一个已知分隔符简单分割(例如,用破折号分割或用空格分割).str.split() 方法就足够了 。 它在字符串(系列)上运行,并返回列表(系列)。...,每包含列表相应元素 下面来看下如何从:分割成一个包含个元素列表至分割成,每包含列表相应元素。..., B1] A1 B1 1 A2-B2 [A2, B2] A2 B2 补充知识:pandas某一每一行拆分成多行方法 在处理数据过程,常会遇到将一条数据拆分成多条,比如一个人地址信息,可能有多条地址...在pandas如何对DataFrame进行相关操作呢,经查阅相关资料,发现了一个简单办法, info.drop([‘city’], axis=1).join(info[‘city’].str.split...以上这篇Pandas实现一数据分隔为就是小编分享给大家全部内容了,希望能给大家一个参考。

    6.9K10

    Excel与pandas:使用applymap()创建复杂计算

    标签:Python与Excel,pandas 我们之前讨论了如何在pandas创建计算,并讲解了一些简单示例。...通过将表达式赋值给一个新(例如df['new column']=expression),可以在大多数情况下轻松创建计算。然而,有时我们需要创建相当复杂计算,这就是本文要讲解内容。...图1 创建一个辅助函数 现在,让我们创建一个取平均值函数,并将其处理/转换为字母等级。 图2 现在我们要把这个函数应用到每个学生身上。那么,在对每个学生进行循环?不!...pandas applymap()方法 pandas提供了一种将自定义函数应用于或整个数据框架简单方法,就是.applymap()方法,这有点类似于map()函数作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三每一上分别使用map(),而applymap()能够覆盖整个数据框架(多)。

    3.9K10

    Python-科学计算-pandas-21-DF2转为字典

    系统:Windows 10 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 pandas:1.1.5 这个系列讲讲Python科学计算及可视化...今天讲讲pandas模块 抽取Df构成一个字典 Part 1:场景描述 已知df1,包括6,"time", "pos", "value1", "value2", "value3", "value4...抽取其中pos和value1构成一个字典 由df生成字典 Part 2:代码 import pandas as pd dict_1 = {"time": ["2019-11-02", "...to_dict() 将字典值组织方式改为集合,dict_map = df_1.groupby('pos')['value1'].apply(set).to_dict(),结果如下,修改了一下数据源,可以实现去重效果...同样数据源种方式差别如下 dict_map = df_1.groupby(‘pos’)[‘value1’].apply(set).to_dict() dict_map = df_1.groupby

    1.5K20

    Pandas如何查找某中最大值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找某中最大值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    34610

    Pandas 查找,丢弃值唯一

    前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame 值唯一,简言之,就是某数值除空值外,全都是一样,比如:全0,全1,或者全部都是一样字符串如...:已支付,已支付,已支付… 这些大多形同虚设,所以当数据集很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把缺失值先丢弃,再统计该唯一值个数即可。...代码实现 数据读入 检测值唯一所有并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...值唯一 ” --> “ 除了空值以外唯一值个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我其余文章,提建议,共同进步。

    5.7K21

    Python 计算文件行数

    计算文件行数:最简单办法是把文件读入一个大列表,然后统计列表长度.如果文件路径是以参数形式filepath传递,那么只用一行代码就可以完成我们需求了: count = len(open...(open(thefilepath, 'rU')): pass count += 1 另外一种处理大文件比较快方法是统计文件换行符个数'\n '(或者包含'\n'字串,如在windows...系统): count = 0 thefile = open(thefilepath, 'rb') while True: buffer = thefile.read(8192*1024)...linecache预先把文件读入缓存起来,后面如果你访问该文件的话就不再从硬盘读取 读取文件某一行内容(测试过1G大小文件,效率还可以) import linecache count = linecache.getline...(filename,linenum) 三、用linecache读取文件内容(测试过1G大小文件,效率还可以) str = linecache.getlines(filename) str为列表形式,每一行为列表一个元素

    76010

    【如何在 Pandas DataFrame 插入一

    然而,对于新手来说,在DataFrame插入一可能是一个令人困惑问题。在本文中,我们将分享如何解决这个问题方法,并帮助读者更好地利用Pandas行数据处理。...为什么要解决在Pandas DataFrame插入一问题? Pandas DataFrame是一种二维表格数据结构,由行和组成,类似于Excel表格。...在实际数据处理,我们经常需要在DataFrame添加新,以便存储计算结果、合并数据或者进行其他操作。...解决在DataFrame插入一问题是学习和使用Pandas必要步骤,也是提高数据处理和分析能力关键所在。 在 Pandas DataFrame 插入一个新。...通过学习和实践,我们可以克服DataFrame插入一问题,更好地利用Pandas库进行数据处理和分析。

    72910

    pandasloc和iloc_pandas获取指定数据行和

    大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到种方法:iloc和loc。...读取第二行值 (2)读取第二行值 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过行、名称或标签来索引 iloc:通过行、索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...(1)读取第二行值 # 索引第二行值,行标签是“1” data1 = data.loc[1] 结果: 备注: #下面种语法效果相同 data.loc[1] == data.loc...3, 2:4]第4行、第5取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    8.8K21

    对比Excel,Python pandas删除数据框架

    标签:Python与Excel,pandas 删除也是Excel常用操作之一,可以通过功能区或者快捷菜单命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行一些方法,删除与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除数据框架,仍然使用前面给出“用户.xlsx”数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除。...唯一区别是,在该方法,我们需要指定参数axis=1。下面是.drop()方法一些说明: 要删除单列:传入列名(字符串)。 删除多:传入要删除名称列表。...实际上我们没有删除,而是创建了一个新数据框架,其中只包含用户姓名、城市和性别,有效地“删除”了其他。然后,我们将新创建数据框架赋值给原始数据框架以完成“删除操作”。注意代码双方括号。

    7.2K20

    Python-科学计算-pandas-22-按某排序

    系统:Windows 10 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 pandas:1.1.5 这个系列讲讲Python科学计算及可视化...今天讲讲pandas模块 将df按某进行排序 Part 1:场景描述 已知df1,包括6,"time", "pos", "value1", "value2", "value3", "value4...其中value4为周次信息,想获取最新周次value1取值 如下图,最新周次应该为21KW36,其对应value1取值为50 df Part 2:逻辑 将df按照value4进行排序...取第1行value1取值即为所求 Part 3:代码 import pandas as pd dict_1 = {"time": ["2019-11-02", "2019-11-03", "2019...True)即按照升序来排序,结果如下图 val = df_1.iloc[0, 2],获取第1行第3取值,即value1取值。

    1.5K00

    Python-科学计算-pandas-23-按去重

    系统:Windows 10 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 pandas:1.1.5 这个系列讲讲Python科学计算及可视化...今天讲讲pandas模块 将df按某进行去重 Part 1:场景描述 已知df1,包括6,"time", "pos", "value1", "value2", "value3", "value4...有个需求: 根据pos,去除重复记录; 根据pos和value1,去除重复记录,即要求这都相等时去重 df_1 Part 2:根据pos去重 import pandas as pd dict...若列表元素大于1个,要求同时满足多对应记录相同才能去重。...keep="first"表示去重后,保留第1个记录 df_2=df_1后对,df_2进行去重后,df_1同时发生了变化,表明个变量对应地址应该是同一区域 本文为原创作品,欢迎分享朋友圈

    1.3K10

    Python-科学计算-pandas-13-列名删除替换nan

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python科学计算及可视化 今天讲讲pandas模块 修改Df列名,删除某,以及将nan值替换为字符串yes Part 1:目标 ?...该方法生成了一个新df,不是直接在原df上进行操作 df_2.drop(['value2'], axis=1, inplace=True),删除列名为value2,axis=1表示按进行删除,inplace...=True表示对原df进行操作,保留操作后结果,与第1点情况不同 df_2.fillna("yes", inplace=True) 将nan值用字符串yes进行替换 定义nan值使用np.nan方法...实际情况,当df某行某没有赋值,会出现nan值情况,对于nan值有些情况需要处理,例如使用Django进行网站搭建,后端向前端反馈数据时,不能包括nan值

    2K10

    在数据框架创建计算

    标签:Python与Excel,pandas 在Excel,我们可以通过先在单元格编写公式,然后向下拖动来创建计算。在PowerQuery,还可以添加“自定义”并输入公式。...在Python,我们创建计算方式与PQ中非常相似,创建一计算将应用于这整个,而不是像Excel“下拉”方法那样逐行进行。要创建计算,步骤一般是:先创建,然后为其指定计算。...图1 在pandas创建计算关键 如果有Excel和VBA使用背景,那么一定很想遍历中所有内容,这意味着我们在一个单元格创建公式,然后向下拖动。然而,这不是Python工作方式。...其正确计算方法类似于Power Query,对整个执行操作,而不是循环每一行。基本上,我们不会在pandas循环一,而是对整个执行操作。这就是所谓“矢量化”操作。...panda数据框架字符串操作 让我们看看下面的示例,从公司名称拆分中文和英文名称。df[‘公司名称’]是一个pandas系列,有点像Excel或Power Query

    3.8K20
    领券