作为老牌涂料品牌,立邦漆近期的转型简直可以称得上“逆生长”:从耳熟能详的广告语“为你刷新生活”,到年轻化iColor官网的上线,实现了一场华丽转身。从产品开发、制造,到直面客户的销售环节,立邦涂料,这一拥有近120年历史的涂料公司,拥抱信息技术,将大数据分析融合到产品开发、制造和销售等各个环节中,全方位多角度的让数据分析发挥功效。 利用数据分析深度了解消费者偏好,找准市场定位 立邦的家装设计网站iColor官网不仅能够像普通家装网站一样提供家装问题的解答,让消费者获取大众生活中具有普遍认同感的大众时尚装修理
随着互联网的兴起,人工智能和大数据成为了热门领域,越来越多的企业开始通过对数据的挖掘分析来为商业决策提供建议,在国内市场,人工智能和大数据领域人才出现巨大的缺口。而数据分析师入行需要的技术能力较易,转行/自学性价比极高,成为大数据领域的热门职业。
大数据文摘作品,欢迎个人转发朋友圈,自媒体、媒体、机构转载务必申请授权,后台留言“机构名称+文章标题+转载”,申请过授权的不必再次申请,只要按约定转载即可,但文末需放置大数据文摘二维码。 素材来自:《大数据供应链》 中国人民大学出版社 【成功的诺基山】 2003年,钢铁制造建筑领军企业诺基山(Rocky Mountain) 钢铁公司迫于价格压力不得不关闭其钢管工厂。2005年,由于石油成本提高,潜在的客户、石油钻井公司纷纷涌现,公司需要重新制定策略。需不需要重开钢管工厂?如果要,什么时候重开?是马上开始生产
“为了在内部项目过会上,证明某平台的可投性。走访了20多个地区做调研,蹲点影院、商场、游戏厅等年轻人聚集的地方,观察当地年轻人在观影间隙、闲暇之余,都在用什么APP。并将调研结果整理成了一份长达60多页的PPT,试图说服领导。”
物流产业是物流资源产业化而形成的一种复合型或聚合型产业。物流资源包括运输、仓储、装卸、搬运、包装、流通加工、配送、信息平台等。这些资源产业化后就形成了运输业、仓储业、装卸业、包装业、加工配送业、物流信息业等。它是一种复合型产业,因为所有产业的物流资源不是简单的垒加,而是一种整合。
前言
大数据对于企业成功所起到的关键性作用在各行各业都正飞速显现出来,但是在高管人员看来,很多企业并未完全准备好利用这一趋势以实现大数据价值的最大化。贝恩公司对来自世界各地的400多家年收入超过10亿美元的企业的高管进行了访谈,并与他们深入地探讨了所在公司在数据收集和分析能力、决策速度以及效率等各方面的表现。 访谈结果令人吃惊:仅有4%的企业被认为真正擅长于大数据分析—— 他们能够围绕设定的业务重心调动合适的人员,使用有效的工具并收集合理的数据,并根据大数据分析的发现改变企业运作的方式或者提高
备品备件管理是企业设备管理中至关重要的一环,如何实现备品备件的精准化管理是企业必须面对的重要课题。易点易动设备管理系统是一款功能全面、操作简便、操作便捷的设备管理系统,可以有效地实现备品备件的精准化管理。本文将从以下几个方面进行探讨,介绍如何使用易点易动设备管理系统实现备品备件的精准化管理。
大数据概念 "大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 大数据的4V特点:Volume、Velocity、Variety、Veracity。 "大数据"首先是指数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构
活动概况 ---- 活动主题:客户标签画像推荐系统 活动嘉宾:李永、符鹏飞 活动对象:信息主管CIO、业务部门主管、工程师、SI人员 活动时间: 2015年9月19日14:00~17:30 活动地点:罗湖世界金融中心A座5楼(深南东路4003号) 主办承办:大数据厂商联盟、PPV课 嘉宾介绍及分享内容 ---- 嘉宾:李永——大数据厂商联盟秘书长 分享内容:《怎样规划部署大数据分析应用》 1,怎样部署客户(消费者、会员)统一视图(客户标签与360度画像) 2,怎样部署产品标签画像与订单分析 3
<数据猿导读> 上周,先是Salesforce上半年接连并购超过9家科技公司,被传或是向微软隔空叫板;紧接着谷歌收购云服务公司Orbitera,在后紧追不舍;然而,几天之后谷歌&亚马逊“联手”出奇招,
随着近些年国家工业信息化进程脚步的不断加快,以及国际社会在工业现代化、工业4.0等方面的不断演进,使得大数据技术在工业行业以及制造业方面也进行了比较深度的技术融合和应用融合,我们就来聊聊在上述领域的大数据应用。 近年来出现的人力短缺、工资上涨、产品交付期短和市场需求变动大等问题,使得制造业正面临新一波转型挑战。如何在控制生产成本的同时,还能提高生产力与效率,则是转型的主要目的。在这样的背景下,德国、美国等制造业发达国家无不积极推动“工业4.0”。 “工业4.0”本质上是通过信息物理系统实现工厂的设备传感和控
大数据时代,大数据分析行业水涨船高,很多身边的朋友都想学习一下如何进行大数据分析。经常有人问我该怎么选择大数据分析工具。也对,面对市面上那么多大数据分析工具,大家在选择的时候都会懵一下。
数据库、数据仓库和数据湖是数据管理系统中常见的三种概念,它们在存储结构、处理数据的方式、用途等方面各有特点。以下是对这三个概念的简要讲解:
软件和服务的大数据分析市场收入预计将从2018年的 42B增长到2027年的 103B,复合年增长率(CAGR)为10.48%。这就是为什么,大数据分析认证是业内最全神贯注的技能之一。 在这个“大数据分析应用领域”文章中,我将带您进入各个行业领域,在这里我将解释大数据分析如何使它们发生革命性变化。
在当今信息时代,大数据已成为了无处不在的存在。从社交媒体上的点赞和分享,到在线购物的记录,再到传感器生成的海量数据,我们的世界充斥着各种各样的数据。这些数据的数量之大,以至于我们开始用“数据大爆炸”来形容这一现象。但这些数据不仅仅是数字的堆积,它们是有价值的资源,因为通过适当的大数据分析,我们可以从中提取出有意义的信息,这不仅改变了商业,也改变了我们的生活方式、医疗保健、科学研究等方方面面。
本文探讨了大数据分析所面临的10个最重要的隐私风险。这些风险包括隐私泄露、无法匿名化、屏蔽数据可能泄露个人信息、基于解释的不道德行为、大数据分析并非100%准确、歧视、涉及到的个人几乎没有法律保护、大数据可能永远存在、对电子证据发现的影响以及使专利和版权变得无关紧要。在使用大数据分析时,组织应在实际使用分析之前确定相关的隐私和信息安全影响。
从前任百度大数据部门的技术经理,到今天神策数据CEO,9年时间,桑文锋身上发生了许多变化。他笑称,这种变化从他的微信好友数量就能看出来。创业之前,他只有200多个好友,现在已经迅速逼近5000人的上限
在中国,从2013年大数据元年始,上至国家总理,下至普通平民,大数据的词汇已经深入人心,大家都觉得大数据是个好事,但基本上都是叫好不叫坐,尤其是在传统企业中。现今的中国,大数据在互联网、电商、金融等行业都得到了很好的发展应用,而在传统企业举步维艰,究其原因,一般都有如下几点问题: 一是数据量太少的困扰。一般传统的大中型企业都已经进行了信息化的过程,也有了企业的完整的ERP系统,数据都已经采集到结构化数据库中,但这些结构化数据的量级和大数据PB级的量级相比,差之甚远。面对这种小量的数据,企业的DBA的解决方案
数据分析的概念对于大家来说早已司空见惯,数据分析技能目前也已成为求职者和工作场所人员的一个亮点。对于面对自身累积的庞大财务数据,业务数据和运营数据,流量数据及其他数据资产的公司,公司如何利用大数据并进行大数据分析?我们从以下几个方面来了解一下。
MongoDB是一种流行的文档型数据库,被广泛用于Web应用程序、大数据分析、云计算等领域。本文将介绍MongoDB的基本概念和主要特点,并探讨其在典型应用场景中的应用。
本项目基于大型物流公司研发的智慧物流大数据平台,该物流公司是国内综合性快递、物流服务商,并在全国各地都有覆盖的网点。经过多年的积累、经营以及布局,拥有大规模的客户群,日订单达上千万,如此规模的业务数据量,传统的数据处理技术已经不能满足企业的经营分析需求。该公司需要基于大数据技术构建数据中心,从而挖掘出隐藏在数据背后的信息价值,为企业提供有益的帮助,带来更大的利润和商机
原文链接:https://mp.weixin.qq.com/s/kCDYOInF8KjHstIMAWSljA
被大数据分析算法刷屏的各种推荐,刷个抖音,被频繁的推荐可能认识的人,其中就包括分手一年多的前女友;淘宝闲逛,推送的都是你妈妈搜索过的中老年大码女装;微博浑水,你多看了两秒钟“十二星座理想中的另一半”,往下刷的微博几乎都是关于星座的....
Crowds®系列研究中的一部分。这个系列报告将大数据分析定义为最终用户能够访问、分析和管理Hadoop生态体系
制造型企业有哪些业务问题可以通过数据分析解决?今天开始将给大家以具体的业务场景为例,剖析制造行业数据分析相关的具体业务问题。
程序员作为曾经备受羡慕的高薪群体,如今也面临着“保饭碗”的巨大压力,许多想要入坑的新人也处于观望态势。
如果大数据是一块蛋糕,那么大数据分析工具就是切蛋糕的刀叉。人们都期待着能用“刀叉”从大数据中挖出自己想要的“价值”,因此大数据分析工具被人们寄予厚望。而云计算技术的兴起似乎又给大数据注入了新的推进剂,那么大数据和云计算的结合又会发生怎样的化学反应?对大数据分析工具的发展又有怎样的影响?
我们先谈谈大数据是什么样的数据。 IBM有一个著名的5V大数据理论:Volume(大量)、Velocity(高速)、Variety(多样性)、Value(价值)以及Veracity(真实性)。简而言之,达到大规模的数据,极快的流通速度,数据类型和来源的多样性,低值密度以及可以反映事物真实性的数据就是大数据。那么大数据分析和传统数据分析之间有什么区别?亿信华辰小编给大家介绍一下。
随着信息时代的到来,海量的数据不断涌现,这就引发了一个新的挑战:如何从这些海量数据中提取有用的信息和洞察,以便做出更明智的决策。大数据分析作为应对这一挑战的重要手段,正日益受到关注。而在大数据分析领域,云计算技术发挥着不可替代的作用。本文将探讨云计算在大数据分析中的应用、优势以及对未来发展的影响,同时通过代码示例来帮助读者更好地理解这一重要主题。
随着科学,技术和经济的进步,人类已经进入了信息化和大数据时代。人类生活的世界每天都在爆炸性地生成大量数据,并且面临着诸如宇宙繁星般的大量数据。如何收集,清理,整合,存储,计算,建模,训练,显示和分析数据,如挖掘黄金一样的找到有价值的数据并使用它,一直是许多公司困扰的问题。因此,为了解决这个问题并更好地分析和开发数据,大数据分析工具应运而生。
虽然大数据分析工具提供的功能并非全新,但有三大关键因素已经降低大数据分析的门槛,可以让更多的企业考虑采用大数据技术。 成本 早期的产品通常标价很高,并提供昂贵的集成与部署售后服务。现在的工具套件可选择性多,价格模式也更容易令人接受。 简易 越来越多的工具是面向非专家级别的用户设计的。早期的产品使用者是统计师和数据家,他们不但建立模型,而且还理解这些模型具体如何工作。现在的产品不要求用户要有高级科学学历才能够理解模型结果中的业务优势。 性能 可扩展平台可以满足大数据分析对数据量和计算的需求。现在有很多开源平台
很多人想知道究竟是什么大数据分析。然而网络中对大数据分析的定义却让人看了以后更加糊涂,例如下面是百度百科的解释:
近几年的大数据,确实在行业当中得到越来越多的重视,越来越多的企业开始成立数据业务部门,针对企业不断累积起来的数据资产,进行价值挖掘和应用。对于企业而言,大数据相关人才的引进,有大数据开发,也有数据分析,今天我们就来讲讲大数据开发岗和分析岗两者的区别。
大数据搭着信息时代的快车来到了我们的面前,数据的价值逐渐为人们所重视,同时也让数据分析师的身价倍增。而随着大数据分析工具等大数据应用技术的出现,未来的数据分析师又将遇到怎样的挑战和机遇呢? 工具抢了人
在大数据推动的商业浪潮中,要么学会使用大数据的杠杆创造商业价值,要么被大数据驱动的新商业格局所淘汰。毋庸置疑,当下越来越多的企业已开始应用大数据,并利用大数据分析增强企业的创新能力、竞争力、用户体验与生产力。出身于互联网行业的电商企业已经先知先觉,意识到未来对数据收集和分析能力的强弱将可能决定自身的核心竞争力,数据力就是企业的生命力。目前大部分电商都有自己的大数据策略,在愈演愈烈的市场格局中占取更有利的地形优势。 众所周知,电商和传统商家的最大区别在于,电商构建的各类型数据库可以轻而易举地记录全部用户的各类
根据IDC 监测,人类产生的数据量正在呈指数级增长,大约每两年翻一番,这个速度在2020 年之前会继续保持下去。这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。 一、大数据应用现状 1、数据量在不断增加,且数据结构不断复杂。 根据IDC 监测,人类产生的数据量正在呈指数级增长,大约每两年翻一番,这个速度在2020 年之前会继续保持下去。这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。于此同时,大量新数据源的出现则导致了非结构化、半结构化数据爆发式的增长。 这些由我们创造的信息背后
因为大数据爆发,因此出现了大数据开发、大数据分析这两大主流的工作方向,目前这两个方向是很热门,不少人已经在开始转型往这两个方向发展,相较而言,转向大数据分析的人才更多一点,而同时也有不少人在观望中,这边科多大数据收集了十个为什么要学习大数据分析的十个理由。
对于海量数据价值的挖掘,需要通过大数据分析来实现,而这些数据由于具有不同于传统数据的新特征,传统的数据分析技术和工具都不能高效的进行处理,因而才有了基于大数据技术平台进行大数据分析的需求。今天,我们以Hadoop框架为例,来看几个大数据分析项目实例。
原作者 Maruti Techlabs 编译 CDA 编译团队 本文为 CDA 数据分析师原创作品,转载需授权 大数据每天都在发展,并成为科技界的热门词汇。我们周围的许多人都在谈论它,但他们知道它的真正含义吗? 大数据只不过是非结构化数据的集合。这些数据不是以特定的格式,因为数据集通常是巨大的,有时是数十兆字节,有时甚至超过了PB级别。大数据这个术语出现之前用的是大型数据库(VLDB),由数据库管理系统(DBMS)进行管理。 大量与商业有关的数据能够有效增加公司的销售与利润。为了做到这一点,我们需要利用大
作者:王喆 链接:https://www.zhihu.com/question/23273263/answer/65433220 先说结论:大数据的终极核心价值在于“资源优化配置”。 无论是大数据在
由全球视觉计算行业领袖NVIDIA® (英伟达™)和中科院联合举办的首届“大数据分析论坛(BDA 2015)”于10月26日成功举办,从“大数据分析领域前沿”、“大数据分析的商业应用”以及“大数据分析的科学应用”等三个主题进行了深入讨论,并吸引各方技术专家参与讨论。会中并由NVIDIA全球副总裁、PSG&云计算业务总经理Ashok Pandey与中科院计算机网络信息中心副主任兼超级计算中心主任迟学斌,共同为双方联合建立的GPU研究中心进行揭牌仪式。本次活动为国内结合GPU高性能计算的大加速数据应用市
《福布斯观察》分析大数据六大看点 从理念正确到行动正确路还很长 日前,在美国软件服务提供商天睿公司(Teradata)赞助下,《福布斯观察》联合麦肯锡咨询公司发布有关大数据分析状态的调查报告。调查对象是316位来自全球大型企业的高管。 该调查报告的六大看点 一是对大数据的炒作趋弱,大数据开始为企业争取竞争优势。调查显示,约90%的企业对大数据分析投资处于中等或较高水平。约三分之一的企业高管认为该项投资“非常重要”。最重要的是,约三分之二的受访者认为大数据分析举措已经对企业收入产生了可衡量的重大影响。59%
调查对象被问到,与传统系统相比,他们看到的大数据中的最大机遇是什么?62% 的人同意实时分析隐藏着当下最大的机遇。
在当今数字化时代,数据的价值变得前所未有地重要。随着越来越多的业务流程和交互活动发生在在线和数字环境中,大数据分析已经成为实现业务增长和创新的关键因素之一。本文将探讨大数据分析在驱动业务增长方面的作用,以及如何利用数据洞察力来开拓新的机会。
选文:Selene Wang 翻译:Wendy Zhou, 田桂英 校对:Selene Wang ◆ ◆ ◆ 序言 当今社会,庞大的数据及高端复杂的科学技术正在持续改变着产业的经营方式和竞争方式。每一天,世界上都有两百五十万的三次方的字节数据产生出来,这直接导致了仅在过去两年时间内就创建出世界上90%的数据。这种通常所谓的“大数据”的快速增长和存储,也创造出了很多机会:比如收集数据,处理数据,结构化和非结构化的数据分析等等。 在遵循大数据的3 V法则的基础上(后文会有详细介绍),各类组织通过对已知数据加以分
随着大数据时代的到来,很多人对大数据产生了浓厚的兴趣,然而,大数据只是一个新概念,很多认识都是不正确的。 大数据产生的背景是整个社会走向数字化,特别是社交网络和各种传感设备的发展。大数据分析拥有自身的特点,与计量经济学既有区别又有联系。当前对大数据的分析存在许多流行观点,但其中很多核心观点都值得商榷。 大数据产生的背景是整个社会走向数字化,特别是社交网络和各种传感设备的发展。云计算和搜索引擎的发展,使得对大数据的高效分析成为可能,核心问题是如何在种类繁多、数量庞大的数据中快速获取有价
小微导读 从SGI的首席科学家John R. Masey在1998年提出大数据概念,到大数据分析技术广泛应用于社会的各个领域,已经走过了17年的时间。现在再也没有企业怀疑大数据分析的力量,并且都在竞
时至今日互联网每天新增的数据量达2.5*10^18字节,而全球90%的数据都是在过去的两年间创造出来的。举个直观的例子来说明一下互联网的数据量:假设大西洋里每一升海水代表一个字节的数据,那么整个大西洋
领取专属 10元无门槛券
手把手带您无忧上云