首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

训练图像的纵横比是否会影响Turi Create创建的目标检测模型?

训练图像的纵横比会影响Turi Create创建的目标检测模型。

Turi Create是一个用于机器学习和数据科学的开源工具包,它提供了简单易用的API来训练和部署机器学习模型。在目标检测任务中,训练图像的纵横比是一个重要的因素。

纵横比是指图像的宽度与高度之间的比例关系。当训练图像的纵横比发生变化时,目标检测模型的性能可能会受到影响。这是因为目标检测模型需要学习不同纵横比的目标形状和尺寸。

如果训练图像的纵横比与实际应用场景中的目标纵横比相似,那么目标检测模型的性能通常会更好。因此,在训练目标检测模型时,建议使用与实际应用场景中的目标纵横比相似的训练图像。

对于Turi Create创建的目标检测模型,可以通过调整训练图像的纵横比来优化模型的性能。可以尝试使用不同纵横比的训练图像进行训练,并评估模型在不同纵横比下的性能表现。根据评估结果,选择最适合实际应用场景的纵横比进行训练。

腾讯云提供了一系列与机器学习和图像处理相关的产品,可以用于支持目标检测模型的训练和部署。其中,腾讯云的图像识别服务可以用于图像的预处理和特征提取,腾讯云的机器学习平台可以用于模型的训练和优化。您可以访问腾讯云的官方网站了解更多关于这些产品的详细信息和使用指南。

腾讯云图像识别服务:https://cloud.tencent.com/product/imagerecognition 腾讯云机器学习平台:https://cloud.tencent.com/product/tiia

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    最先进的目标检测网络依赖于区域建议算法来假设目标位置。SPPnet和Faster R-CNN等技术的进步,降低了检测网络的运行时间,但是暴露了区域提案计算的瓶颈。在这项工作中,我们引入了一个与检测网络共享全图像卷积特性的区域建议网络(RPN),从而实现了几乎免费的区域建议。RPN是一个完全卷积的网络,它同时预测每个位置的目标边界和目标得分。对RPN进行端到端训练,生成高质量的区域建议,Faster R-CNN对其进行检测。通过共享卷积特性,我们进一步将RPN和Faster R-CNN合并成一个单独的网络——使用最近流行的具有“Attention”机制的神经网络术语,RPN组件告诉统一的网络去哪里看。对于非常深的VGG-16型号,我们的检测系统在GPU上帧率为5帧(包括所有步骤),同时在PASCAL VOC 2007、2012和MS COCO数据集上实现了最先进的目标检测精度,每张图像只有300个proposal。在ILSVRC和COCO 2015年的比赛中,Faster R-CNN和RPN是在多个赛道上获得第一名的基础。

    02

    计算机视觉最新进展概览(2021年5月30日到2021年6月5日)

    现有的旋转目标检测器大多继承自水平检测范式,因为后者已经发展成为一个成熟的领域。 然而,由于当前回归损失设计的局限性,尤其是对于大纵横比的目标,这些检测器难以在高精度检测中突出表现。 本文从水平检测是旋转物体检测的一种特殊情况出发,从旋转与水平检测的关系出发,将旋转回归损失的设计从归纳范式转变为演绎方法。 在动态联合优化过程中,估计的参数会以自适应和协同的方式相互影响,因此如何调节旋转回归损失中的耦合参数是一个关键的挑战。 具体来说,我们首先将旋转的包围框转换为二维高斯分布,然后计算高斯分布之间的Kullback-Leibler Divergence (KLD)作为回归损失。 通过对各参数梯度的分析,我们发现KLD(及其导数)可以根据对象的特性动态调整参数梯度。 它将根据长宽比调整角度参数的重要性(梯度权重)。 这种机制对于高精度检测是至关重要的,因为对于大纵横比物体,轻微的角度误差会导致严重的精度下降。 更重要的是,我们证明了KLD是尺度不变的。 我们进一步证明了KLD损失可以退化为流行的 损失用于水平检测。

    03

    手把手教你用深度学习做物体检测(五):YOLOv1介绍

    我们提出YOLO,一种新的目标检测方法。以前的目标检测是用分类的方式来检测,而我们将目标检测定义成回归问题,从空间上分隔出边界框和相关的类别概率。这是一个简洁的神经网络,看一次全图后,就能直接从全图预测目标的边界框和类别概率。因为整个检测线是一个单一的网络,在检测效果上,可以直接做端到端的优化。我们的统一架构非常快。我们的基础YOLO模型每秒可以处理45帧图片。该网络的一个更小的版本——Fast YOLO,每秒可以处理155帧图片,其mAP依然能达到其他实时检测模型的2倍。对比最先进的检测系统,YOLO有更多的定位误差,和更少的背景误检情况(把背景预测成目标)。最终,YOLO学到检测目标的非常通用的表示。在从自然图片到其他领域,比如艺术画方面,YOLO的泛化能力胜过其他检测方法,包括DPM和R-CNN。

    04

    Few-shot Adaptive Faster R-CNN

    为了减少由域转移引起的检测性能下降,我们致力于开发一种新的少镜头自适应方法,该方法只需要少量的目标域映射和有限的边界框注释。为此,我们首先观察几个重大挑战。首先,目标域数据严重不足,使得现有的域自适应方法效率低下。其次,目标检测涉及同时定位和分类,进一步复杂化了模型的自适应过程。第三,该模型存在过度适应(类似于用少量数据样本训练时的过度拟合)和不稳定风险,可能导致目标域检测性能下降。为了解决这些挑战,我们首先引入了一个针对源和目标特性的配对机制,以缓解目标域样本不足的问题。然后,我们提出了一个双层模块,使源训练检测器适应目标域:1)基于分割池的图像级自适应模块在不同的位置上均匀提取和对齐成对的局部patch特征,具有不同的尺度和长宽比;2)实例级适配模块对成对的目标特性进行语义对齐,避免类间混淆。同时,采用源模型特征正则化(SMFR)方法,稳定了两个模块的自适应过程。结合这些贡献,提出了一种新型的少拍自适应Fast R-CNN框架,称为FAFRCNN。对多个数据集的实验表明,我们的模型在感兴趣的少镜头域适应(FDA)和非超视域适应(UDA)设置下均获得了最新的性能。

    04

    手把手教你用深度学习做物体检测(七):YOLOv3介绍

    yolo3会利用第82、94、106层的特征图来进行不同尺寸的目标检测。 82层的图像小(分辨率低),感受野大,可以到检测图像中较大的目标; 94层的图像中等,感受野中等,可以检测到图像中不大也不小的目标; 106层的图像大(分辨率高),但感受野相对最小,可以检测到图像中较小的目标。 所以如果训练过程中,发现某层的输出值是非数,这只是说明在这层没有检测到目标对象,只要三层中至少有一层能输出正常的数字,就是正常的。 从图上也可以看到,为了能同时学到浅层和深层的特征,上面的82、94层特征图自身经过上采样后还会和早期层的特征图做一些拼接(concat)操作。用论文原话说就是:这样的方法让我们从上采样特征中得到更多有意义的语义信息;从更早期的特征中得到纹理信息(finer-grained information)。

    02

    Dynamic Anchor Learning for Arbitrary-Oriented Object Detection

    任意方向的目标广泛出现在自然场景、航拍照片、遥感图像等,任意方向的目标检测受到了广泛的关注。目前许多旋转检测器使用大量不同方向的锚点来实现与ground truth框的空间对齐。然后应用交叉-联合(IoU)方法对正面和负面的候选样本进行训练。但是我们观察到,选择的正锚点回归后并不能总是保证准确的检测,而一些阴性样本可以实现准确的定位。这说明通过IoU对锚的质量进行评估是不恰当的,进而导致分类置信度与定位精度不一致。本文提出了一种动态锚学习(DAL)方法,利用新定义的匹配度综合评价锚的定位潜力,进行更有效的标签分配过程。这样,检测器可以动态选择高质量的锚点,实现对目标的准确检测,缓解分类与回归的分歧。在新引入的DAL中,我们只需要少量的水平锚点就可以实现对任意方向目标的优越检测性能。在三个遥感数据集HRSC2016、DOTA、UCAS-AOD以及一个场景文本数据集ICDAR 2015上的实验结果表明,与基线模型相比,我们的方法取得了实质性的改进。此外,我们的方法对于使用水平边界盒的目标检测也是通用的。

    01

    改进YOLOv5的合成孔径雷达图像舰船目标检测方法

    针对合成孔径雷达图像目标检测易受噪声和背景干扰影响, 以及多尺度条件下检测性能下降的问题, 在兼顾网络规模和检测精度的基础上, 提出了一种改进的合成孔径雷达舰船目标检测算法。使用坐标注意力机制, 在确保轻量化的同时抑制了噪声与干扰, 以提高网络的特征提取能力; 融入加权双向特征金字塔结构以实现多尺度特征融合, 设计了一种新的预测框损失函数以改善检测精度, 同时加快算法收敛, 从而实现了对合成孔径雷达图像舰船目标的快速准确识别。实验验证表明, 所提算法在合成孔径雷达舰船检测数据集(synthetic aperture radar ship detection dataset, SSDD)上的平均精度均值达到96.7%, 相比于YOLOv5s提高1.9%, 训练时收敛速度更快, 且保持了网络轻量化的特点, 在实际应用中具有良好前景。

    01

    技术分享 | 遥感影像中的旋转目标检测系列(一)

    与自然影像数据集不同,遥感影像中的目标通常以任意角度出现,如图 1所示。自然影像常用的水平框目标检测方法,在遥感影像上的效果通常不够理想。一方面,细长类目的待检测目标(比如船舶、卡车等),使得水平框检测的后处理很困难(因为相邻目标的水平框的重合度很高)。另一方面,因为目标的角度多变,水平框不可避免引入过多的背景信息。针对这些问题,遥感目标检测更倾向于检测目标的最小外接矩形框,即旋转目标检测。旋转目标检测最近因其在不同场景中的重要应用而受到越来越多的关注,包括航空图像、场景文本和人脸等。特别是在航空图像中,已经提出了许多设计良好的旋转目标检测器,并在大型数据集上(比如 DOTA-V1.0)获得了较好的结果. 与自然图像相比,航拍图像中的物体通常呈现密集分布、大纵横比和任意方向。这些特点使得现有的旋转对象检测器变得复杂。我们的工作重点是简化旋转对象检测,消除对复杂手工组件的需求,包括但不限于基于规则的训练目标分配、旋转 RoI 生成、旋转非最大值抑制 (NMS) 和旋转 RoI 特征提取器。

    01

    Feature Pyramid Networks for Object Detection

    特征金字塔是不同尺度目标识别系统的基本组成部分。但最近的深度学习对象检测器已经避免了金字塔表示,部分原因是它们需要大量的计算和内存。本文利用深卷积网络固有的多尺度金字塔结构构造了具有边际额外成本的特征金字塔。提出了一种具有横向连接的自顶向下体系结构,用于在所有尺度上构建高级语义特征图。该体系结构称为特征金字塔网络(FPN),作为一种通用的特征提取器,它在几个应用程序中得到了显著的改进。在一个基本的Fasater R-CNN系统中使用FPN,我们的方法在COCO检测基准上实现了最先进的单模型结果,没有任何附加条件,超过了所有现有的单模型条目,包括来自COCO 2016挑战赛冠军的条目。此外,我们的方法可以在GPU上以每秒6帧的速度运行,因此是一种实用而准确的多尺度目标检测解决方案。

    02
    领券