首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

证明支配集是NP完全的

支配集是NP完全问题的一个经典例子,下面是对这个问题的详细解释。

支配集问题

支配集问题是指在一个有限集合中,找到一个最小的子集,使得这个子集能够支配整个集合。具体来说,一个集合A支配集合B,当且仅当满足以下条件:

  1. A中的每个元素都支配B中的某个元素。
  2. B中的每个元素都被A中的某个元素支配。

支配集问题可以用来解决许多实际问题,例如最小支配集、最大支配集、支配集树等。

NP完全问题

NP完全问题是指一个问题,如果它的解能够在多项式时间内验证,那么这个问题就是NP完全问题。具体来说,一个问题是NP完全的,当且仅当它是NP问题,并且所有的NP问题都可以在多项式时间内归约到它。

支配集问题是NP完全的

支配集问题是NP完全的,因为它可以在多项式时间内验证解是否正确。具体来说,对于一个给定的集合和一个候选解,可以在多项式时间内验证这个解是否是最小支配集。因此,支配集问题是NP完全的。

腾讯云相关产品

腾讯云提供了一些可以解决支配集问题的产品,例如:

  1. 云服务器:提供了可以部署和运行自定义应用程序的虚拟机实例。
  2. 对象存储:提供了可以存储和管理大量数据的分布式存储服务。
  3. 数据库:提供了可以存储和管理结构化数据的数据库服务。
  4. 云容器:提供了可以部署和运行Docker容器的容器服务。

这些产品可以帮助用户解决支配集问题,但需要用户自行编写相应的代码和算法。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 离散数学笔记第五章(图论 )

    1.无向连通图 G 是欧拉图,当且仅当 G 不含奇数度结点( G 的所有结点度数为偶数); 2.无向连通图G 含有欧拉通路,当且仅当 G 有零个或两个奇数度的结点; 3.有向连通图 D 是欧拉图,当且仅当该图为连通图且 D 中每个结点的入度=出度; 4.有向连通图 D 含有欧拉通路,当且仅当该图为连通图且 D 中除两个结点外,其余每个结点的入度=出度,且此两点满足 deg-(u)-deg+(v)=±1 。(起始点s的入度=出度-1,结束点t的出度=入度-1 或两个点的入度=出度); 5.一个非平凡连通图是欧拉图当且仅当它的每条边属于奇数个环; 6.如果图G是欧拉图且 H = G-uv,则 H 有奇数个 u,v-迹仅在最后访问 v ;同时,在这一序列的 u,v-迹中,不是路径的迹的条数是偶数。 弗勒里算法 弗勒里(B.H.Fleury) 在1883 年给出了在欧拉图中找出一个欧拉环游的多项式时间算法,称为弗勒里算法(Fleury’salgorithm)。这个算法具体表述如下: 输入:一个连通偶图 G 和 G 中任意一个指定项点 u 输出:从 u 出发的 G 的一个欧拉环游 1、令 W:=u,x:=u,F:=G 2、while 3、选一条 中的边 e,其中 e 不是 F 的一条割边;如果 中的边都是割边,那么任选一条边 e 4、用 替换 ,用 y 替换 x ,用 替换 F 5、end while 6、返回 W 其算法核心就是沿着一条迹往下寻找,先选择非割边,除非这个点的邻边都是割边。这样得到一条新的迹,然后再继续往下寻找,直到把所有边找完。遵循这样一个原则就可以找出图的一个欧拉环游来。 在有向图中也可以类似地定义有向环游、有向欧拉环游、有向欧拉图和有向欧拉迹的概念。 类似地,有如下定理:一个有向图是有向欧拉图当且仅当这个图中每个顶点的出度和入度相等。 [1]

    03

    J. Cheminform. | DrugEx v2:多重药理学中基于pareto的多目标强化学习的药物分子从头设计

    本文介绍的是由荷兰莱顿药物研究学术中心、西安交通大学电子与信息工程学院和莱顿高级计算机科学研究所联合发表在Journal of Cheminformatics上的研究成果。作者在之前的一项研究中提出了一种名为DrugEx的药物分子生成方法,将探索策略集成到基于RNN的强化学习中,以提高生成分子的多样性。在本文中,作者通过多目标优化扩展DrugEx算法,以生成针对多个靶标或一个特定靶标的类药物分子,同时避免脱靶(本研究中的两个腺苷受体,A1AR和A2AAR,以及钾离子通道hERG)。该模型使用RNN作为智能体(agent),机器学习预测器作为环境,agent和环境都被预先训练,然后在强化学习框架下交互。作者将进化算法的概念融合到模型中,交叉和变异操作由与agent相同的深度学习模型实现。训练期间,agent生成一批SMILES形式的分子。随后,环境提供的所有靶标的亲和力分数将用于构建生成的分子的帕累托排名,该排序采用了非支配排序算法和拥挤距离算法。作者证明了生成的化合物可以对多种靶标进行作用,并具有高效低毒的潜力。

    05

    NSGA-II多目标遗传算法概述

    Non dominated sorting genetic algorithm -II NSGA-Ⅱ是目前最流行的多目标遗传算法之一,它降低了非劣排序遗传算法的复杂性,具有运行速度快,解集的收敛性好的优点,成为其他多目标优化算法性能的基准。 NSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面: ①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体; ②引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度; ③采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。

    02

    多目标演化算法 | 从参考点出发,求解高维多目标优化问题!

    从社会生活的角度出发,最优化问题普遍存在于我们的日常生活中。例如,人们往往追求利润的最大化、投资风险的最小化等。随着科学技术和生产生活的日益发展,人们面临的优化问题也日渐复杂。其中,多目标优化问题是一类典型的代表。顾名思义,多目标优化问题即人们需同时优化多个目标,且各目标之间往往存在冲突。例如,生产经营者往往希望用最小的代价获得最大的收益;人们购买汽车时,除了考虑价格外,还会考虑汽车的性能、舒适度等(见图一)。而演化算法(见图二)是模拟生物界自然选择和自然进化的随机启发式算法,现已成为当前解决复杂多目标优化问题的有效工具之一。其中,香港城市大学张青富教授提出的MOEA/D目前已成为求解多目标优化问题最流行的算法框架[1-2]。

    04
    领券