[ 导读 ]香侬科技近期提出 Glyce,首次在深度学习的框架下使用中文字形信息(Glyph),横扫 13 项中文自然语言任务记录,其中包括:(1) 字级别语言模型 (2) 词级别语言模型 (3) 中文分词 (4) 命名实体识别 (5) 词性标注 (6) 句法依存分析 (7) 语义决策标注 (8) 语义相似度 (9) 意图识别 (10) 情感分析 (11) 机器翻译 (12) 文本分类 (13) 篇章分析。
在 Python 中,可以使用 Unicode 字符范围来匹配中文字符,其中中文字符的 Unicode 范围是 "\u4e00-\u9fff"。我们可以使用正则表达式模式来匹配中文字符,并提取出来。
选自arXiv 作者:Tailing Yuan等 机器之心编译 参与:刘晓坤、李泽南 文字识别一直是图像处理领域中的重要任务。近日,清华大学与腾讯共同推出了中文自然文本数据集(Chinese Text in the Wild,CTW)——一个超大的街景图片中文文本数据集,为训练先进的深度学习模型奠定了基础。目前,该数据集包含 32,285 张图像和 1,018,402 个中文字符,规模远超此前的同类数据集。研究人员表示,未来还将在此数据集之上推出基于业内最先进模型的评测基准。 资源链接:https://ct
作者介绍: 数据平台部OCR+团队负责人。2008年毕业于中国科学院研究生院,主攻模式识别、计算机视觉、图像处理、以及深度学习等方向。读研期间曾在模式识别顶级期刊PAMI(IEEE Transactions on Pattern Analysis and Machine Intelligence)发表指纹识别相关论文。此前在腾讯优图团队从事图像处理(人脸识别)相关工作,现在属于腾讯技术工程事业群\数据平台部\OCR+团队,主要从事文字识别、图像语义理解等相关工作。 引言 OCR技术,通俗来讲就是从图像中
文字,一种信息记录的图像符号,千年来承载了太多的人类文明印记。OCR,一种自动解读这种图像符号的技术,一直以来都备受关注。尤其在信息时代的今天,数字图像纷繁复杂,如何便捷高效的获取其中的文字信息,更有着重要的时代意义。作为模式识别领域最为经典的研究热点之一,OCR经历了长时间的发展变化,各种新技术、新方法、新应用层出不穷。 OCR技术的过去和现在: OCR(光学字符识别技术),是通过扫描仪或相机等光学输入设备获取纸张上的文字、图片信息,利用各种模式识别算法对文字的形态结构进行分析,形成相应的字符特征描述
a.制作需要的水印图片,获取相应的水印信息,如倾斜,大小比率,颜色,图片中水印与水印的距离等。收集相应的没有水印的营业执照图片;
在本文中,我们用自然图像中包含的文字创建了一个大型数据集,名为Chinese Text in the Wild(CTW)。该数据集包含32,285张带有1,018,402个中文字符的图像,远远超出了之前的数据集,这些图片来自腾讯街景,从中国数十个不同的城市获取,没有任何特殊目的。由于其多样性和复杂性,该数据库存在极大的挑战性。它包含平面文本,凸起文本,城市文本,农村文本,低亮度文本,远处文本,部分遮挡文本等。对于每个图像,我们注释其所有中文。对每一个中文字符,我们注释它的底层字符,边界框和6个属性,以指示它是否被遮挡,复杂背景,扭曲,3D文字,艺术字和手写体。
AI 科技评论按:随着苹果机器学习日记(Apple ML Journal)的开放,苹果分享出的设计自己产品、运用机器学习解决问题的故事也越来越多。近日苹果在上面就放出了一篇关于识别手写中文的文章,介绍
今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具 ——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。
今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。
我最近在给自己的公众号分栏目, 恰好可以用里面的文字来给公众号logo生成文字云
点击上方蓝色“程序猿DD”,选择“设为星标” 回复“资源”获取独家整理的学习资料! 在我们办公时,是不是经常遇到图片内容转文字的需求? 你是用什么工具解决的呢?是手机自带拍照转文字功能?还是使用 QQ 里面的工具? 今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具 ——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。 项目链接:https://github.com/ianzhao05/textshot 使用方法 运行
机器之心报道 机器之心编辑部 这个文本 OCR 小工具,能让你「所截即所得」。 在我们办公时,是不是经常遇到图片内容转文字的需求? 你是用什么工具解决的呢?是手机自带拍照转文字功能?还是使用 QQ 里面的工具? 今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。 项目链接:https://github.com/ianzhao05/textshot 使用方法 运行 text
选自arXiv 作者:Danyang Sun等 机器之心编译 参与:Nurhachu Null、刘晓坤 近日,清华大学提出了一种风格感知变分自编码器(SA-VAE),通过引入先验知识,结合少量的样本学
中文字体显示问题 Pycharm在使用matplotlib画图时,如果在title,xlabel,ylabel中出现了中文,则会出现字体警告,中文字符显示为方框,具体如下例:
旧文 OpenGL ES 文字渲染方式有几种? 一文中分别介绍了 OpenGL 利用 Canvas 和 FreeType 绘制文字的方法。 无论采用哪种方式进行渲染,本质上原理都是纹理贴图:将带有文字的图像上传到纹理,然后进行贴图。
本文主要介绍C++版PaddleOCR GPU版的使用步骤和测试时间对比(相对CPU)。
Tesseract 是一个开源的 OCR(光学字符识别)引擎,最初由惠普实验室开发,后来由 Google 接管并开源。OCR 是一种将图像中的文本转换为可编辑文本的技术,它可以自动识别图像或扫描文档中的文字,并将其转换为数字形式。
iText for mac是一款OCR截图文字识别工具,通过截图、拖拽图片,即可以从扫描版的PDF等任意图片中识字,并且可以很好的解决摘抄和批注需求,帮助用户识别图片中文字,节约时间,提高效率。
本文参考http://blog.sina.com.cn/s/blog_4aa166780101cji7.html实现,在这里感谢该文章的作者。 OCR(Optical Character Recognition):光学字符识别,是指对图片文件中的文字进行分析识别,获取的过程。 Tesseract:开源的OCR识别引擎,初期Tesseract引擎由HP实验室研发,后来贡献给了开源软件业,后经由Google进行改进,消除bug,优化,重新发布。当前版本为3.02 项目下载地址为:http://jaist.dl.
围绕智慧社区基本定义、场景需求理解、算法设计实现、边缘设备部署等核心要点,利用边缘设备AidLux,带大家完成智慧社区里面的两个典型场景:高空抛物和车牌识别的算法开发,以及在边缘设备上的部署。
旧文 OpenGL ES 文字渲染方式有几种? 一文中分别介绍了 OpenGL 利用 Canvas 和 FreeType 绘制文字的方法。
在微表情识别系统的研究中,对微表情的准确理解是至关重要的。本章将深入探讨微表情的定义、与常规表情的区别以及微表情的分类,为读者提供深入了解微表情的基础知识。
Geoffrey Hinton,可能未必所有人都听过, 但他创立的门派——深度学习,却无人不知,点开本文的高傲的你,也许就是、或者即将成为,他的徒孙。 Geoffrey Hinton,将反向传播BP用于多层神经网络、发明了玻尔兹曼机(Boltzmann machine),深度学习领域的开山祖师、三大巨头之首。 PS:另2位巨头是Yann LeCun和Yoshua Bengio,其中Yann LeCun是Facebook的人工智能研究总监,CNN(卷积神经网络)之父,同时也是Hinton的学生! 他还有
《Neutral Network for Machine Learning》(机器学习中的神经网络)系列课程,是深度学习大神 Geoffrey Hinton 毕生所学之作,也是他目前唯一一门的公开课。 Hinton 何许人?之前介绍过,他是深度学习的开山祖师,三大巨头(另2位巨头是 Yann LeCun 和 Yoshua Bengio,其中 Yann LeCun 是Facebook的人工智能研究总监,CNN(卷积神经网络)之父,同时也是 Hinton 的学生!)。 金庸小说里常见的桥段是,主角偶然的机
文本是人类最重要的信息来源之一,自然场景中充满了形形色色的文字符号。在过去的十几年中,研究人员一直在探索如何能够快速准确的从图像中读取文本信息,也就是现在OCR技术。
一、前言 文字承载着站点内涵,而良好的字体、排版则为用户提供舒适的阅读体验。本文打算对字体稍微深入一下子网页字体的内容,若有纰漏请大家指正,谢谢! 目录一坨: 二, 字体分类 1. 衬线体(Serif) 2. 无衬线体/非衬线体(Sans-Serif) 3. 等宽体(Monospace) 4. 手写体/书法体(Calligraphy) 5. 符号体(Symbol) 三, 再识font-family 1. 认识font-fam
导语 | 2021年1月, 微信发布了微信8.0, 这次更新支持图片文字提取的功能。用户在聊天界面和朋友圈中长按图片就可以提取图片中文字,然后一键转发、复制或收藏。图片文字提取功能基于微信自研OCR技术,本文将介绍微信OCR能力是如何落地文字提取业务的。文章作者:伍敏慧,腾讯WXG研发工程师。 一、背景 微信8.0上线了图片提取文字的功能,用户在聊天界面和朋友圈中如果想提取图像中的文字,不用再辛苦打字了,只要简单几个步骤,就可以拿到图片中的文字内容,超级方便实用。 图1 微信客户端提取图片中的
又来到了测试网络会议的第九期培训,本期的主讲人皮卡丘,培训的是关于OCR-tesseract 使用,话不多说详情如下:
近年来,移动互联、大数据等新技术飞速发展,倒逼传统行业向智能化、移动化的方向转型。随着运营集约化、数字化的逐渐铺开,尤其是以OCR识别、数据挖掘等为代表的人工智能技术逐渐深入业务场景,为用户带来持续的经济效益和品牌效应。图书情报领域作为提升公共服务的一个窗口,面临着新技术带来的冲击,必须加强管理创新,积极打造智能化的图书情报服务平台,满足读者的个性化需求。无论是高校图书馆还是公共图书馆,都需加强人工智能基础能力的建设,并与图书馆内部的信息化系统打通,优化图书馆传统的服务模式,提升读者的借阅体验。
我们之前已经讲述了matplotlib的绘图原理,陆续会更新绘图技巧、相关图形绘制。
随着科技的不断发展,文字识别技术已经成为了人们生活中不可或缺的一部分。而在众多的文字识别技术中,腾讯云OCR无疑是其中最为出色的之一。OCR技术, 即Optical Character Recognition(光学字符识别),用于识别图像中的文字,常见的有卡证识别、票据识别和通用识别等。OCR具有非常广泛的应用场景。如目前火热的教育场景中拍照搜题和智能作业批改、金融场景中票据识别、办公场景的文档电子化、交通场景中的停车管理等,都用到了OCR的识别能力。
白蛇: 白纸黑字的扫描文档识别技术已经很成熟,而自然场景图像文本识别的效果还不理想。倾斜字、艺术字、变形字、模糊字、形似字、残缺字、光影遮蔽、多语言混合文本等应用落地面临的技术难题还没被彻底解决。
0629封面.jpg 番外 青蛇: 姐, 图像文本检测和识别领域现在的研究热点是什么? 白蛇: 白纸黑字的扫描文档识别技术已经很成熟,而自然场景图像文本识别的效果还不理想。倾斜字、艺术字、变形字、模
谷歌2017开发者大会 Google I/O已经落幕,有不少亮点都值得我们学习和回顾,其中相当一部分是机器学习开发的内容。AI研习社精选了其中的精彩视频译制呈现给大家,该视频为中文字幕版首发! 来自谷歌TensorFlow技术推广部的Josh Gordon 带来了一场主题为《用于图像、语言和艺术的开源TensorFlow模型》(Open Source TensorFlow Models for images, language and art)的演讲,介绍了最新的从图像识别和语义理解的TensorFlow
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说车牌号识别 python + opencv「建议收藏」,希望能够帮助大家进步!!!
想要自动爬取网页内容,但是有些网站需要输入验证码,而验证码总是随机的,为了解决这个问题,首先需要自动获取验证码,然后将其下载下来,最后识别其中文字内容。
自然场景文本提取是图像语义信息抽取的一个重要分支,它的实现需要CV和NLP技术,即既需要使用视觉处理技术来提取图像中文字区域的图像特征向量,又需要借助自然语言处理技术来解码图像特征向量为文字结果。
说来也巧最近不知道发点什么文章,在后台测试代码的时候看见网友在文章“修改网页自定义字体的CSS代码+图文教程”反馈,怎么在css里汉字和字母使用不同的字体,应该怎么判断和实现,这个问题问得好,文章有内容了,哈哈哈,因为没使用过中英文分开设置字体,所以我也得先去补习一下,搜索了下关键字,其实跟上篇文章也差不多,只是多个一个写法,使用 font-family 的调用方法,根据font-family的原则,假如客户终端不认识前面的字体,就自动切换到第二种字体,第二种不认识就切换到第三种,以此类推。假如都不能识别就调用默认字体,代码示例如下:
光学字符识别(OCR)现在已经有很广泛的应用了,很多开源项目都会嵌入已有的 OCR 项目来扩展能力,例如 12306 开源抢票软件,它就会调用其它开源 OCR 服务来识别验证码。很多流行的开源项目,其背后或多或少都会出现 OCR 的身影。
OCR(optical character recognition)文字识别是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,然后用字符识别方法将形状翻译成计算机文字的过程;即,对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程。如何除错或利用辅助信息提高识别正确率,是OCR最重要的课题。衡量一个OCR系统性能好坏的主要指标有:拒识率、误识率、识别速度、用户界面的友好性,产品的稳定性,易用性及可行性等。
摘要:在日常生活工作中,我们难免会遇到一些问题,比如自己辛辛苦苦写完的资料,好不容易打印出来却发现源文件丢了;收集了一些名片,却要一个一个地录入信息,很麻烦;快递公司的业务越来越好,但每天需要花费很多时间登记录入运单,效率非常的低。
网络安全字体是由许多操作系统预先安装的字体。虽然不是所有的系统都安装了相同的字体,但你可以使用网络安全字体堆栈来选择几种看起来类似的字体,并且安装在你想支持的各种系统上。如果你想使用预装字体以外的字体,从CSS3开始,你可以使用网络字体Web fonts - Learn web development | MDN。
再谈seo基础教程url优化篇 网站做出来是给用户看的,也是给搜索引擎看的,在做网站之前,就建议规划好网站的url,考虑其是否对搜索引擎优化,对其进行seo优化设置。注:如果想学习seo,不建议一次性系统学习seo基础教程,耗时长且效果不好,建议的学习方法是把握重点,再在平常的工作中积累。 部分对搜索引擎友好的点,很容易实现,但却被很多seo人忽视掉了,url设置就是很典型的优化点,其设置简单,但作用很大,且容易被忽视。在url结构的优化方面,建议的做法与原则是:越简单越好,越平常越好。 在此,提供几个具
Tesseract是Ray Smith于1985到1995年间在惠普布里斯托实验室开发的一个OCR引擎,曾经在1995 UNLV精确度测试中名列前茅。但1996年后基本停止了开发。2006年,Google邀请Smith加盟,重启该项目。目前项目的许可证是Apache 2.0。该项目目前支持Windows、Linux和Mac OS等主流平台。但作为一个引擎,它只提供命令行工具。 现阶段的Tesseract由Google负责维护,是最好的开源OCR Engine之一,并且支持中文。
领取专属 10元无门槛券
手把手带您无忧上云