首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

交叉熵损失函数

目标就是让损失函数最小化,损失越小的模型越好。交叉熵损失函数,就是众多损失函数中重要一员,它主要用于对分类模型的优化。...在模型训练过程中,将模型权重进行迭代调整,以最大程度地减少交叉熵损失。权重的调整过程就是模型训练过程,并且随着模型的不断训练和损失的最小化,这就是机器学习中所说的学习过程。...熵 随机变量 的熵定义: 关于熵的更多内容,请参阅《机器学习数学基础》(2021年5月,电子工业出版社出版)。 交叉熵损失函数 交叉熵损失函数,也称为对数损失或者logistic损失。...在训练模型的时候,使用交叉熵损失函数,目的是最小化损失,即损失越小的模型越好。最理想的就是交叉熵损失函数为 。...在(Keras)[https://keras.io/zh/](一种高级神经网络接口,Google的TensorFlow在其核心库中已经支持Keras[2])中提供了多种交叉熵损失函数: 二分类 多分类

1.3K41
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    交叉熵--损失函数

    交叉熵(Cross Entropy) 是Shannon信息论中一个重要概念, 主要用于度量两个概率分布间的差异性信息。 语言模型的性能通常用交叉熵和复杂度(perplexity)来衡量。...将交叉熵引入计算语言学消岐领域,采用语句的真实语义作为交叉熵的训练集的先验信息,将机器翻译的语义作为测试集后验信息。计算两者的交叉熵,并以交叉熵指导对歧义的辨识和消除。...交叉熵不失为计算语言学消岐的一种较为有效的工具。   交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。...交叉熵作为损失函数还有一个好处是使用sigmoid函数在梯度下降时能避免均方误差损失函数学习速率降低的问题,因为学习速率可以被输出的误差所控制。...q)称之为交叉熵。

    10510

    一文总结熵,交叉熵与交叉熵损失

    作者 | Vijendra Singh 编译 | VK 来源 | Medium 交叉熵损失是深度学习中应用最广泛的损失函数之一,这个强大的损失函数是建立在交叉熵概念上的。...为了全面理解,我们需要按照以下顺序理解概念:自信息, 熵,交叉熵和交叉熵损失 自信息 "你对结果感到惊讶的程度" 一个低概率的结果与一个高概率的结果相比,低概率的结果带来的信息量更大。...交叉熵损失 紫色线代表蓝色曲线下的面积,估计概率分布(橙色线),实际概率分布(红色线) 在上面我提到的图中,你会注意到,随着估计的概率分布偏离实际/期望的概率分布,交叉熵增加,反之亦然。...因此,我们可以说,最小化交叉熵将使我们更接近实际/期望的分布,这就是我们想要的。这就是为什么我们尝试降低交叉熵,以使我们的预测概率分布最终接近实际分布的原因。...因此,我们得到交叉熵损失的公式为: 在只有两个类的二分类问题的情况下,我们将其命名为二分类交叉熵损失,以上公式变为:

    63420

    一文总结熵、交叉熵和交叉熵损失

    作者 | Vijendra Singh 编译 | VK 来源 |Medium 交叉熵损失是深度学习中应用最广泛的损失函数之一,这个强大的损失函数是建立在交叉熵概念上的。...为了全面理解,我们需要按照以下顺序理解概念:自信息, 熵,交叉熵和交叉熵损失。 自信息 "你对结果感到惊讶的程度" 一个低概率的结果与一个高概率的结果相比,低概率的结果带来的信息量更大。...交叉熵损失 紫色线代表蓝色曲线下的面积,估计概率分布(橙色线),实际概率分布(红色线) 在上面我提到的图中,你会注意到,随着估计的概率分布偏离实际/期望的概率分布,交叉熵增加,反之亦然。...因此,我们可以说,最小化交叉熵将使我们更接近实际/期望的分布,这就是我们想要的。这就是为什么我们尝试降低交叉熵,以使我们的预测概率分布最终接近实际分布的原因。...因此,我们得到交叉熵损失的公式为: 在只有两个类的二分类问题的情况下,我们将其命名为二分类交叉熵损失,以上公式变为:

    1.1K20

    LOSS:交叉熵损失函数

    交叉熵损失函数 交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。...以前做一些分类问题的时候,经常会用到,最近老师让看下交叉熵损失函数,今天就来看看他是何方神圣。 信息论 交叉熵损失函数是基于信息论提出来的。...信息论的重要特征是信息熵(entropy)的概念,他是事件发生不确定性的度量单位,信息熵越大表示不确定性越高,反之不确定性越低。...image.png 相对熵(KL散度) 相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (...image.png 交叉熵 image.png 参考资料: 【1】机器学习—蔡自兴 【2】https://blog.csdn.net/tsyccnh/article/details/79163834

    97620

    深度学习 | 交叉熵损失函数

    Cross Entropy Error Function 交叉熵损失函数 一,信息量 信息量: 任何事件都会承载着一定的信息量,包括已经发生的事件和未发生的事件,只是它们承载的信息量会有所不同。...在机器学习中,p往往用来表示样本的真实分布,q用来表示模型所预测的分布,那么KL散度就可以计算两个分布的差异,也就是Loss损失值。...)\log(p(x_i))-\sum_{i=1}^np(x_i)\log(q(x_i)) 根据熵的定义,前半部分是p(x)的熵H(x)=-\sum_{i=1}^np(x_i)\log(p(x_i)),而后半部分则是交叉熵...五,交叉熵损失函数 在线性回归问题中,常常使用MSE(Mean Squared Error)作为loss函数,而在分类问题中常常使用交叉熵作为loss函数,特别是在神经网络作分类问题时,并且由于交叉熵涉及到计算每个类别的概率...,所以交叉熵几乎每次都和sigmoid或者softmax函数一起出现。

    2.5K31

    交叉熵损失(Cross Entropy)求导

    本文链接:https://blog.csdn.net/chaipp0607/article/details/101946040 Cross Entropy是分类问题中常见的一种损失函数,我们在之前的文章提到过二值交叉熵的证明和交叉熵的作用...,下面解释一下交叉熵损失的求导。...{f_{i}}}{\sum_{k=0}^{C-1} e^{f_{k}}}pi​=∑k=0C−1​efk​efi​​ 类别的实际标签记为y0...yiy_{0}...y_{i}y0​...yi​,那么交叉熵损失...\partial p_{j}}{\partial f_{i}}∂fi​∂L​=j=0∑C−1​∂pj​∂Lj​​∂fi​∂pj​​ 在这里需要说明,在softmax中我们使用了下标iii和kkk,在交叉熵中使用了下标...iii,但是这里的两个iii并不等价,因为softmax的分母中包含了每个神经元的输出fff,也就是激活后所有的ppp对任意的fif_{i}fi​求偏导都不为0,同时LLL中又包含了所有的ppp,所以为了避免重复我们需要为

    1.5K10

    从熵到交叉熵损失的直观通俗的解释

    来源:DeepHub IMBA 本文约1100字,建议阅读5分钟本文从信息论的角度解释有关熵的概念。 对于机器学习和数据科学的初学者来说,必须清楚熵和交叉熵的概念。...在图像分类中,经常会遇到对于 N 类的交叉熵损失,如下表示,其中 y{i} 和 {y{i}}冒 分别是实际标签和预测。当 N = 2时交叉熵损失将简单地变成逻辑回归中使用的log损失。...如果高熵则意味着事件的可能结果中固有的不确定性水平很高。 交叉熵考虑了近似于真实分布 P 的分布 Q,并使用分布 Q 测量表示遵循分布 P 的数据所需的比特数。...交叉熵损失是量化我们的机器学习模型对数据真实分布 (P) 的近似 (Q) 的好坏程度 (Q) 的好方法。请注意,Log损失只是一个二元交叉熵损失。...希望本篇文章能够帮助你对熵是什么以及它如何连接到交叉熵以进行机器学习有了更好的了解。 编辑:于腾凯 校对:杨学俊

    36430

    从熵到交叉熵损失的直观通俗的解释

    对于机器学习和数据科学的初学者来说,必须清楚熵和交叉熵的概念。它们是构建树、降维和图像分类的关键基础。 在本文中,我将尝试从信息论的角度解释有关熵的概念,当我第一次尝试掌握这个概念时,这非常有帮助。...在图像分类中,经常会遇到对于 N 类的交叉熵损失,如下表示,其中 y{i} 和 {y{i}}冒 分别是实际标签和预测。当 N = 2时交叉熵损失将简单地变成逻辑回归中使用的log损失。...如果高熵则意味着事件的可能结果中固有的不确定性水平很高。 交叉熵考虑了近似于真实分布 P 的分布 Q,并使用分布 Q 测量表示遵循分布 P 的数据所需的比特数。...交叉熵损失是量化我们的机器学习模型对数据真实分布 (P) 的近似 (Q) 的好坏程度 (Q) 的好方法。请注意,Log损失只是一个二元交叉熵损失。...希望本篇文章能够帮助你对熵是什么以及它如何连接到交叉熵以进行机器学习有了更好的了解。

    40340

    交叉熵损失函数的概念和理解

    除了数学表达式相似以外,完全可以将这里的熵和其热力学概念联系起来....在对符号进行编码时,如果假设了其他的概率 而非真实概率 ,则对每个符号所需的编码的长度就会更大.这正是交叉熵所发挥作用的时候....例如,ASCII会对每个符号赋予相同的概率值 .下面计算采用ASCII编码时单词"HELLO"的交叉熵: 从而采用ASCII编码时,每个字符需要8个位,这与预期完全吻合....作为一个损失函数假设p为所期望的输出和概率分布("编码"),其中实际值 有100%,而其他任何值为0,将q作为由模型计算得到的输出,请牢记,sigmoid函数的输出是一个概率值....有这样一个定理:当p=q时,交叉熵去的最小值.因此可以利用交叉熵比较一个分布与另一个分布的吻合情况.交叉熵越接近与熵,q便是针对p更好的逼近,实际上,模型的输出与期望输出越接近,交叉熵也会越小,这正是损失函数所需要的

    1.1K20

    熵、交叉熵和KL散度的基本概念和交叉熵损失函数的通俗介绍

    交叉熵(也称为对数损失)是分类问题中最常用的损失函数之一。但是,由于当今庞大的库和框架的存在以及它们的易用性,我们中的大多数人常常在不了解熵的核心概念的情况下着手解决问题。...所以,在这篇文章中,让我们看看熵背后的基本概念,把它与交叉熵和KL散度联系起来。我们还将查看一个使用损失函数作为交叉熵的分类问题的示例。 什么是熵?...在上面的例子中,我拍摄了一只浣熊的图像,所以在真实分布中,它的概率是100%,其他的概率是0。我们可以用这两种分布之间的交叉熵作为代价函数,称之为交叉熵损失。...由于得到的损失较多(由于预测的分布太低),我们需要为每一类训练更多的例子来减少损失量。 结论 我们以气象站更新次日天气为例,了解香农信息论的概念。然后我们把它与熵和交叉熵联系起来。...最后,我们以一个例子来说明交叉熵损失函数的实际应用。希望本文能澄清熵、交叉熵和KL散度背后的基本概念及其相互关系。 作者:Aakarsh Yelisetty deephub翻译组

    1.1K30

    两种交叉熵损失函数的异同

    在学习机器学习的时候,我们会看到两个长的不一样的交叉熵损失函数。 假设我们现在有一个样本 {x,t},这两种损失函数分别是。 [图片] , t_j说明样本的ground-truth是第j类。...[图片] 这两个都是交叉熵损失函数,但是看起来长的却有天壤之别。为什么同是交叉熵损失函数,长的却不一样呢? 因为这两个交叉熵损失函数对应不同的最后一层的输出。...首先来看信息论中交叉熵的定义: [图片] 交叉熵是用来描述两个分布的距离的,神经网络训练的目的就是使 g(x)g(x) 逼近 p(x)p(x)。 现在来看softmax作为最后一层的情况。...现在应该将最后一层的每个神经元看作一个分布,对应的 target 属于二项分布(target的值代表是这个类的概率),那么第 i 个神经元交叉熵为: [图片] ,所以最后一层总的交叉熵损失函数是 [图片...] 解释完了,最后总结一下:这两个长的不一样的交叉熵损失函数实际上是对应的不同的输出层。

    83790

    为什么使用交叉熵作为损失函数?

    data​,这一部分对每个特定数据集来说是一个定值,为了简化去掉该部分我们最后得到了交叉熵。...也就是说,虽然最小化的是交叉熵,但其实我们的目的是最大似然,因为最大似然有以下性质: 最大似然有两个非常好的统计性质: 样本数量趋于无穷大时,模型收敛的概率会随着样本数m的增大而增大。...另外,在梯度计算层面上,交叉熵对参数的偏导不含对sigmoid函数的求导,而均方误差(MSE)等其他则含有sigmoid函数的偏导项。...大家知道sigmoid的值很小或者很大时梯度几乎为零,这会使得梯度下降算法无法取得有效进展,交叉熵则避免了这一问题。...综上所述,最小化交叉熵能得到拥有一致性和统计高效性的最大似然,而且在计算上也比其他损失函数要适合优化算法,因此我们通常选择交叉熵作为损失函数。

    1.9K30

    简单的交叉熵损失函数,你真的懂了吗?

    交叉熵损失函数的直观理解 可能会有读者说,我已经知道了交叉熵损失函数的推导过程。但是能不能从更直观的角度去理解这个表达式呢?而不是仅仅记住这个公式。好问题!...同样,预测输出越接近真实样本标签 0,损失函数 L 越小;预测函数越接近 1,L 越大。函数的变化趋势也完全符合实际需要的情况。 从上面两种图,可以帮助我们对交叉熵损失函数有更直观的理解。...这是由 log 函数本身的特性所决定的。这样的好处是模型会倾向于让预测输出更接近真实样本标签 y。 3. 交叉熵损失函数的其它形式 什么?交叉熵损失函数还有其它形式?没错!...我刚才介绍的是一个典型的形式。接下来我将从另一个角度推导新的交叉熵损失函数。 这种形式下假设真实样本的标签为 +1 和 -1,分别表示正类和负类。...同样,s 越接近真实样本标签 -1,损失函数 L 越小;s 越接近 +1,L 越大。 4. 总结 本文主要介绍了交叉熵损失函数的数学原理和推导过程,也从不同角度介绍了交叉熵损失函数的两种形式。

    12.3K10

    深度学习相关概念:5.交叉熵损失

    我在学习深度学习的过程中,发现交叉熵损失在分类问题里出现的非常的频繁,但是对于交叉熵损失这个概念有非常的模糊,好像明白又好像不明白,因此对交叉熵损失进行了学习。...交叉熵损失详解 1.激活函数与损失函数   首先我们要知道的一点是,交叉熵损失是损失函数的一种。但是在神经网络中,我们常常又听到另外一种函数:激活函数,这2种函数到底有什么区别呢?他们的作用是什么?...当事件分布满足one-hot分布,即A,B,C三件事的发生概率为(1 0 0)或(0 1 0)或(0 0 1)时,交叉熵=熵,也就是说交叉熵损失函数等于对数损失函数,具体推导见下图。...4.1交叉熵的作用: 衡量多分类器输出与预测值之间的关系   交叉熵损失函数的标准形式如下:   注意公式中 x 表示样本, y表示实际的标签,a 表示预测的输出, n表示样本总数量。...但是交叉熵损失,在这种情况下他并没有停止训练,这个时候他依然有很大的损失,他会要求这个分数尽量的高。

    65020

    均方误差,交叉熵损失函数举例计算

    好了,有了模型之后,我们需要通过定义损失函数来判断模型在样本上的表现了,那么我们可以定义哪些损失函数呢?...Mean Squared Error (均方误差) 均方误差损失也是一种比较常见的损失函数,其定义为: 模型1: 对所有样本的loss求平均: 模型2: 对所有样本的loss求平均: 我们发现,MSE能够判断出来模型...主要原因是在分类问题中,使用sigmoid/softmx得到概率,配合MSE损失函数时,采用梯度下降法进行学习时,会出现模型一开始训练时,学习速率非常慢的情况(MSE损失函数)。...有了上面的直观分析,我们可以清楚的看到,对于分类问题的损失函数来说,分类错误率和均方误差损失都不是很好的损失函数,下面我们来看一下交叉熵损失函数的表现情况。...交叉熵损失函数 现在我们利用这个表达式计算上面例子中的损失函数值: 模型1: 对所有样本的loss求平均: 模型2: 对所有样本的loss求平均: 可以发现,交叉熵损失函数可以捕捉到模型1和模型2预测效果的差异

    10110
    领券