其中,声学模型主要描述发音模型下特征的似然概率,语言模型主要描述词间的连接概率;发音词典主要是完成词和音之间的转换。 接下来,将针对语音识别流程中的各个部分展开介绍。
小编所在项目中,C1、C1Pro、C1Max录音笔,通过BLE和APP连接,音频文件实时传输到录音助手App端,具备实时录音转写的功能。工欲善其事必先利其器,小编补习了语音识别相关基础知识,对所测试应用的实时转写业务逻辑有了更深的认识。希望对语音测试的小伙伴们也有所帮助~~(●—●)
语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。
语音控制的基础就是语音识别技术,可以是特定人或者非特定人的。非特定人的应用更为广泛,对于用户而言不用训练,因此也更加方便。语音识别可以分为孤立词识别,连接词识别,以及大词汇量的连续词识别。对于智能机器人这类嵌入式应用而言,语音可以提供直接可靠的交互方式,语音识别技术的应用价值也就不言而喻。 1 语音识别概述 语音识别技术最早可以追溯到20世纪50年代,是试图使机器能“听懂”人类语音的技术。按照目前主流的研究方法,连续语音识别和孤立词语音识别采用的声学模型一般不同。孤立词语音识别一般采用DTW动态时间规整
大家好,又见面了,我是你们的朋友全栈君。 二、问答题(每题 5 分,共 20 分) 1、语音信号处理主要研究哪几方面的内容? 语音信号处理是研究用数字信号处理技术对语言信号进行处理的一门学科, 语音信号处理的理论和研究包括紧密结合的两个方面: 一方面, 从语言的产生和感知来对其进行研究, 这一研究与语言、语言学、认知科学、心理、生理等学科密不可分;另一方面,是将语音作为一种信号来进行处理, 包括传统的数字信号处理技术以及一些新的应用于语音信号的处理方法和技术。 2、语音识别的研究目标和计算机自动
共振峰:当把声道看成一个发音的腔体的时候,激励的频率达到他的固有频率,则声道会以最大的振幅来振荡,即产生共鸣,这个频率称为共振频率(formant frequency),简称共振峰(formant)
对于想进入语音识别领域的学习者来说,了解语音识别系统的一些基本概念,会有助于更快的进入这个行业的交流平台,本文对语音识别系统的一些常见概念做了整理,希望能对刚开始接触语音学习的人有所帮助。
本文参考文献 [1]詹新明,黄南山,杨灿.语音识别技术研究进展[J].现代计 算机(专业版) [2]《语音识别》——维基百科,自由百科的全书 [3]杨行峻, 迟惠生,“语音数字信号处理”, 电子工业出版社. 1995 [4]崔天宇 吉林大学硕士学位论文《基于HMM的语音识别系统的研究与实现 》 [5]陆昱方,科技传播第二期期刊《简述语音识别的实现过程》
上一节主要介绍了关于加窗函数的相关内容。对语音的时域信号进行分析是最直观的分析方式。本文将介绍语音信号处理中四种时域特征,分别是短时能量、短时过零率、短时自相关函数以及短时平均幅度差。
随着自然语言处理(NLP)技术的不断发展,它的应用范围逐渐扩展到了语音识别领域。语音识别是一项重要的技术,可以将人类语音转换为文本,为语音交互系统、智能助手等提供支持。本文将深入探讨NLP在语音识别中的应用,探讨其原理、技术方法以及面临的挑战。
说话的声音(声带震动)和其他声音相比,有独特的时域和频域模式。声带的震动产生基频(fundamental frequency),口腔共振(the pharyngeal and oral resonance cavities)等产生高频谐波
通常我们说到语音识别技术的时候,指的是整个语音对话系统,如图所示,语音对话系统通常包括四个主要组成部分的一个或多个:语音识别系统将语音转化为文本、语义理解系统提取用户说话的语义信息、文字转语音系统将内容转化为语音、对话管理系统连接其他三个系统并完成与实际应用场景的沟通。所有这些部分对建立一个成功的语音对话系统都是很关键的。
浏览继续论坛时候,突然发现腾讯IOT开发板,特别好奇。腾讯什么时候开始也要布局物联网了,去年试用了阿里云的板子,还有关注了阿里IOT的比赛,阿里在布局云和物联网速度的速度。今年腾讯也开始了,两家巨头又要碰在一起了。不过还是特别开心,能够率先试用腾讯Tensentos,熟悉一下腾讯IOT。
手机用户的普遍如何快速的应答与高质量的沟通是智能客服的关键问题。 采用合理的分层结构流程与先进的中间组件(例如,语音识别、语音合成、智能对话、知识图谱等技术组建),建立客服热线自动语音应答系统。缓解人工忙线,客户问题简单,如法充分利用资源的情况。 借用AI相关的技术,建立稳定、有效的智能语音应答系统的研究目标。
语音是指人类通过发音系统,包括肺部、气管、喉部声门和声带、咽腔、口腔、鼻腔等,发出的在空气中传播的、具有一定意义的声音,是语言的声音形式,是人人交流中最主要的信息载体。另外,通过让机器能听会说,语音也成为人机交互的重要入口。
作者 | 陈孝良 责编 | 胡永波 目前来看,语音识别的精度和速度比较取决于实际应用环境,在安静环境、标准口音、常见词汇上的语音识别率已经超过95%,完全达到了可用状态,这也是当前语音识别比较火热的原因。 随着技术的发展,现在口音、方言、噪声等场景下的语音识别也达到了可用状态,但是对于强噪声、超远场、强干扰、多语种、大词汇等场景下的语音识别还需要很大的提升。当然,多人语音识别和离线语音识别也是当前需要重点解决的问题。 学术界探讨了很多语音识别的技术趋势,有两个思路是非常值得关注的,一个是就是端到端的语音识别
看到一篇CVPR 2019 论文《Learning Individual Styles of Conversational Gesture》,通过语音数据识别说话人手势,觉得蛮有意思。
就目前的 AI 来看,判断某项工作是不是会被机器替代,有俩前提,大前提:可以获得足够的有效数据(能自动生成数据则无敌),也就是说机器有快速进化的基础;小前提:人本身的进化过程没有见过大量的数据,也就是说人的起点并不高。考虑到“自动生成数据”这个关键,我冥思苦想以后发现,还真没准是编程。
今天我开通了新专栏《语音处理》,又名曰——不语。我将分享介绍一些关于语音信号处理的基础知识。
摘要:语音信号处理是目前发展最为迅速的信息科学研究领域中的一个,是目前极为活跃和热门的研究领域,其研究成果具有重要的学术及应用价值。语音信号处理的研究,对于机器语言、语音识别、语音合成等领域都具有很大的意义。MATLAB软件以其强大的运算能力可以很好的完成对语音信号的处理。通过MATLAB可以对数字化的语音信号进行时频域分析,方便地展现语音信号的时域及频域曲线,并且根据语音的特性对语音进行分析。本文主要研究了基于MATLAB软件对语音信号进行的一系列特性分析及处理,帮助我们更好地发展语音编码、语音识别、语音合成等技术。本文通过应用MATLAB对语音信号进行处理仿真,包括短时能量分析、短时自相关分析等特性分析,以及语音合成等。
文 / 陈孝良 11月16号,百度发布了渡鸦智能音箱和DuerOS开发板SoundPi,至此,国内再一名巨头加入智能音箱大战。迄今为止,国内战场上的巨头有阿里、京东、腾讯、百度、小米、科大讯飞等,国外则有苹果、微软、亚马逊、谷歌、脸书、三星等,这些巨头占据了全球市值的排名榜,同时发力争夺未来人工智能时代的语音入口,甚至亚马逊和阿里率先不惜代价开启了补贴大战。这些全球巨头的激烈竞争,将对未来十年产生极其重要的影响,同时,这更是新一波的职业快速发展机会。 语音智能当前的核心关键是声学问题和语义理解,随着市
上一节主要介绍了关于语音听觉的相关内容,从本节开始,我们将展开一系列关于语音时域信号分析、频域信号、线性预测分析、倒谱特征等相关内容。
Nyquist 采样率大于或等于连续信号最高频率分量的 2 倍时,采样信号可以用来完美重构原始连续信号。
语音识别建模对语音识别来说是不可或缺的一部分,因为不同的建模技术通常意味着不同的识别性能,所以这是各个语音识别团队重点优化的方向。也正是因为如此,语音识别的模型也层出不穷,其中语言模型包括了N-gram、RNNLM等,在声学模型里面又涵盖了HMM、DNN、RNN等模型...
大家都知道,近年来,物联网(IoT)的应用越来越受欢迎,其应用范围从构建能源监控到个人健康追踪和活动识别。为了利用这些数据,自动知识提取(automatic knowledge extraction)必须按比例进行。因此,我们可以看到,最近很多物联网数据集都包含一个人类专家指定状态的注释,记录为数据序列中的一组边界和相关标注。这些数据可以用来构建自动标注算法(automatic labeling algorithms),从而可以像专家一样生成标注。在这里,我们将人为指定的边界称为breakpoints(断点
音频信号是模拟信号,我们需要将其保存为数字信号,才能对语音进行算法操作,WAV是Microsoft开发的一种声音文件格式,通常被用来保存未压缩的声音数据。
通过对比滤波器和波形,可以发现滤波之前有很多高频分量,而这些高频分量会对基音检测带来不利影响,选择合适的低通滤波器能消除这一影响,更好体现低频特性。
摘要:MATLAB是十分强大的用于数据分析和处理的工程实用软件,利用其来进行语音信号的分析、处理和可视化十分便捷。文中介绍了在MATLAB环境中如何驱动声卡采集语音信号和语音信号采集后的文档处理方法,并介绍了FFT频谱分析原理及其显示、MATLAB中相关函数的功能、滤波器的设计和使用。在此基础上,对实际采集的一段含噪声语音信号进行了相关分析处理,包括对语音信号的录取和导入,信号时域和频域方面的分析,添加噪声前后的差异对比,滤波分析,语音特效处理。结果表明利用MATLAB处理语音信号十分简单、方便且易于实现。
⚫ 加窗:分帧后,每一帧的开始和结束都会出现间断。因此分割的帧越多,与原始信号的误差就越大, 加窗就是为了解决这个问题,使成帧后的信号变得连续,并且每一帧都会表现出周期函数的特性。
一、前言 6月27日,美国权威科技杂志《MIT科技评论》公布2017全球最聪明50家公司榜单。科大讯飞名列中国第一、全球第六。全世界排在科大讯飞前面企业分别是:英伟达、Spacex、亚马逊、23andme、Alphabet。 《MIT科技评论》认为,“科大讯飞旗下的语音助手是中国版的Siri,其可携带实时翻译器则是一款杰出的人工智能应用,克服了方言、俚语和背景杂音,可将汉语精准地翻译成十几种语言。科大讯飞在中国语音技术市场的占有率70%。”越来越多的人认为,语音识别将成为下一代交互革命的关键技术。 与此
⚫ U-Net是2015年菲兹保大学的Olaf Ronneberger等人提出的生物图像分割的深度学习模 型。
作者 | 李通旭,刘乐 责编 | 何永灿 “声纹”作为一种典型的行为特征,相比其他生理特征在远程身份认证中具有先天的优势,文章介绍了声密保在远程身份认证中的应用,解析了一些在声纹识别准确率、时变问题和噪音问题等方面的技术难点和工程解决经验,最后针对远程身份认证的安全性问题,分享了得意音通在防录音闯入上的最新研究成果。希望对广大读者有所帮助。 声纹在远程身份认证中的应用 网络安全面临重大挑战 无线互联网以及智能手机的迅速发展,给人们日常生活带来极大便利的同时也带来了不容忽视的安全隐患,如何准确、迅速、安全地
语音信号处理综合运用了数字信号处理的理论知识,对信号进行计算及频谱分析,设计滤波器,并对含噪信号进行滤波。
近期,语音与语言处理领域旗舰会议IEEE ASRU 2023论文入选结果公布。腾讯云媒体处理(MPS)在语音增强降噪方向的创新成果再获业界认可,《Magnitude-and-phase-aware Speech Enhancement with Parallel Sequence Modeling》(简称MPCRN)和《VSANet: Real-time Speech Enhancement Based on Voice Activity Detection and Causal Spatial Attention》(简称VSANet)两篇论文被IEEE ASRU 2023录用。本文将结合论文内容,与大家分享腾讯云媒体处理(MPS)在音频处理方面的最新能力、相关技术方案以及算法原理。
注:本文章仅供参考,本人并非通信专业,相关知识早已忘得差不多了,所以不要再问我相关问题啦~sorry
现实中的语音交互系统,无一例外的会受到各种环境不利因素的影响,极大影响了交互成功率和用户体验。
有幸邀请到了在2019大学生电子设计大赛的获奖优秀队员为本公众号投稿,将分几次推文为大家介绍几只优秀队伍的作品。
语音识别是一项非常重要的技术,它可以将人类的语音转化为计算机可以理解的形式。深度学习是一种非常强大的机器学习技术,它在语音识别方面也有广泛的应用。本文将详细介绍深度学习在语音识别方面的应用。
导读 | 深度学习是实现语音增强最主要的方法之一,帮助我们从带噪语音中提取尽可能纯净的原始语音,提高语音质量和可懂度。腾讯会议在去年年底推出,短短两个月内就突破千万日活大关。在多样且复杂的场景下,深度学习如何帮助腾讯会议在实时通话中进行去混响、声音事件检测和回声消除?本文是腾讯多媒体实验室高级研究员王燕南在「腾讯技术开放日·云视频会议专场」的分享整理。 点击视频,查看直播回放 一、经典的语音增强深度学习算法 语音增强是指当语音信号被各种各样的噪声干扰、甚至淹没后,从噪声背景中提取有用的语音信号,抑
以声音这种更方便、亲近的交流方式能传递的信息比文字更多,语音、语气、语调甚至停顿长短都能反应一个人的情绪变化,不少年轻用户看来,声音可以让自己更贴切地感知到对方的存在。
当前智能手机上的运动传感器由于对振动的敏感性已被用于监听音频。但由于两个公认的限制,此威胁被认为是低风险的:首先,与麦克风不同,运动传感器只能捕获通过固体介质传播的语音信号,因此先前唯一可行的设置是使用智能手机陀螺仪窃听放置在同一桌子上的扬声器;第二个限制来自常识,即由于200Hz的采样上限,这些传感器只能捕获语音信号的窄带(85-100Hz)。在本文中将重新探讨运动传感器对语音隐私的威胁,并提出了一种新型侧信道攻击AccelEve,它利用智能手机的加速度计来窃听同一智能手机中的扬声器。
选自Google Research Blog 作者:Inbar Mosseri等 机器之心编译 在嘈杂的环境中,人们非常善于把注意力集中在某个特定的人身上,在心理上「屏蔽」其他所有声音。这种能力被称为「鸡尾酒会效应」,是我们人类与生俱来的技能。然而,虽然关于自动语音分离(将音频信号分离为单独的语音源)的研究已经非常深入,但该问题仍是计算机领域面临的重大挑战。谷歌今日提出一种新型音频-视觉模型,从声音混合片段(如多名说话者和背景噪音)中分离出单独的语音信号。该模型只需训练一次,就可应用于任意说话者。 在《Lo
摘 要 本课程设计主要内容是设计利用窗口设计法选择FLATTOPWIN窗设计一个FIR滤波器,对一段含噪语音信号进行滤波去噪处理并根据滤波前后的波形和频谱分析滤波性能。本课程设计仿真平台为MATLAB7.0,开发工具是M语言编程,通过课程设计了解FIR滤波器设计的原理和步骤,掌握用MATLAB语言设计滤波器的方法,了解FLATTOPWIN对FIR滤波器的设计及编程方法。首先利用windows自带的录音机录制一段语音信号,加入一单频噪声,对信号进行频谱分析以确定所加噪声频率,设计滤波器进行滤波去噪处理,比较滤波前后的波形和频谱并进行分析。由分析结果可知,滤波 后的语音信号与原始信号基本一致,即设计的FIR滤波器能够去除信号中所加单频噪声,达到了设计目的。 关键词 滤波去噪;FIR滤波器;FLATTOPWIN窗;MATLAB
语音助手已经成为现代生活中不可或缺的一部分。人们可以通过语音助手进行各种操作,如查询天气、播放音乐、发送短信等。语音助手的核心技术是语音识别。本文将详细介绍语音识别的语音助手。
语音活动检测(Voice Activity Detection, VAD)用于检测出语音信号的起始位置,分离出语音段和非语音(静音或噪声)段。VAD算法大致分为三类:基于阈值的VAD、基于分类器的VAD和基于模型的VAD。
1987年:Lim和Oppenheim发表语音增强的维纳滤波方法; 1987年:Boll发表谱减法; 1980年:Maulay和Malpass提出软判决噪声一直方法; 1984年:Ephraim和Malah提出基于最小均方误差短时谱幅度估计的语音增强算法;
上一节介绍了一些基本的概念和应用,从本节开始我们将对语音信号处理的各个方面进行系统性介绍。
领取专属 10元无门槛券
手把手带您无忧上云