编者按:语音合成一直以来是语言、语音、深度学习及人工智能等领域的热门研究方向,受到了学术界和工业界广泛的关注。尽管语音合成技术的研究已有几十年的历史,基于神经网络的语音合成技术也有近十年历史,且已产出了大量的优质研究成果,但针对神经语音合成不同研究方向的整合型综述论文却十分匮乏。近日,微软亚洲研究院的研究员们通过调研了450余篇语音合成领域的文献,发表了迄今为止语音合成领域几乎最详尽的综述论文 “A Survey on Neural Speech Synthesis”。在文中,研究员们还整理收集了语音合成领域的相关资源如数据集、开源实现、演讲教程等,同时也对语音合成领域未来的研究方向进行了探讨和展望。希望本文能对相关工作的研究人员提供具有价值的参考。
语音合成是一项重要的人工智能技术,它可以将文本转换为自然流畅的语音,为语音交互应用、辅助技术等领域提供了便利。本文将介绍如何利用AI技术实现自然和多样的语音合成,让你的应用更具人性化和个性化。
TTS是Text To Speech的缩写,即“从文本到语音”,是人机对话的一部分,让机器能够说话。
最近,一个名为 ChatTTS 的文本转语音项目突然火了起来,吸引了大家的广泛关注。
今年 4 月,QQ 浏览器宣布 「小说频道」正式变更为 「免费小说」频道,这意味着阅文平台旗下的万千小说将免费供用户阅读。网络文学已浮浮沉沉二十余载,其阅读方式也随之几经改变。
智能语音技术已经在生活中随处可见,常见的智能应用助手、语音播报、近年来火热的虚拟数字人,这些都有着智能语音技术的身影。智能语音是由语音识别,语音合成,自然语言处理等诸多技术组成的综合型技术,对开发者要求高,一直是企业应用的难点。
LiveVideoStack:贺雯迪,你好,感谢你接受LiveVideoStack的采访,作为本次大会AI与多媒体内容生产创作专场的讲师,请先和大家介绍一下你目前负责的工作方向和演讲内容。
贺雯迪:我目前在喜马拉雅担任音频算法工程师,工作研发方向是TTS前端模块的搭建和优化(文本规整化、分词、多音字、韵律预测等),后端算法(基于深度生成模型的说话人风格转换,情感控制,音色克隆、神经声码器的优化等方向)。演讲的方向是基于现在语音合成领域中比较具有发展前瞻性和讨论性的:语音合成中风格迁移、情感合成、音色克隆等衍生方向上技术和应用方面的探讨。
智能语音技术已经在生活中随处可见,常见的智能应用助手、语音播报、近年来火热的虚拟数字人,这些都有着智能语音技术的身影。智能语音是由语音识别,语音合成,自然语言处理等诸多技术组成的综合型技术,对开发者要求高,一直是企业应用的难点。 飞桨语音模型库 PaddleSpeech ,为开发者提供了语音识别、语音合成、声纹识别、声音分类等多种语音处理能力,代码全部开源,各类服务一键部署,并附带保姆级教学文档,让开发者轻松搞定产业级应用! PaddleSpeech 自开源以来,就受到了开发者们的广泛关注,关注度持续上涨。
爱丁堡大学课程(全英文,有能力的推荐学习一遍):https://speech.zone/courses/speech-synthesis/
大家好,我是崔庆才。 想必大家在开发项目过程中可能或多或少用到语音识别、语音合成等相关技术,但又不知道哪家的服务好,而且有的收费还贼贵。尤其流式识别更是个难题。 今天我给大家推荐一个流式语音合成库,现在在 GitHub 上已经开源,而且已经斩获 3.1k star,效果很不错,同时这也是业界首个流式语音合成系统,推荐给大家试试。 具体详情大家可以了解下文哈,最后还有直播课,大家感兴趣欢迎扫码了解。 智能语音技术已经在生活中随处可见,常见的智能应用助手、语音播报、近年来火热的虚拟数字人,这些都有着智能语音技术
NVIDIA NeMo是一款由NVIDIA开发的开源框架,主要用于构建和训练先进的对话式AI模型,NVIDIA NeMo 近期发布了 T5-TTS 型号,标志着文本转语音(TTS)技术的重大进步。这款基于大型语言模型(LLM)的新模型能够生成更准确、更自然的语音,极大地提升了用户体验和应用潜力。
AI科技评论按:目前,基于神经网络的端到端文本到语音合成技术发展迅速,但仍面临不少问题——合成速度慢、稳定性差、可控性缺乏等。为此,微软亚洲研究院机器学习组和微软(亚洲)互联网工程院语音团队联合浙江大学提出了一种基于Transformer的新型前馈网络FastSpeech,兼具快速、鲁棒、可控等特点。与自回归的Transformer TTS相比,FastSpeech将梅尔谱的生成速度提高了近270倍,将端到端语音合成速度提高了38倍,单GPU上的语音合成速度达到了实时语音速度的30倍。
彩虹屁插件红了后,你是否想生成定义语音包呢?本文给出一个解决方案,使用科大讯飞的TTS生成彩虹屁语音包,你可以完全自定义文本,自定义发音人哦!
“前方路口请直行”、“限速100”、“前方路段拥堵”等,是不是看到这些导航常用语句,脑海中已经有您常听的声音浮现了?导航播报所使用的TTS语音合成技术的商业化道路从有声听书、银行智能客服覆盖到虚拟人配音、残障人士辅助应用等,用户需求来源多样,应用场景逐步细化和专业,在这众多的行业所孕育出的应用场景中,TTS语音合成技术大幅减少文字转为语音的时间与企业用工成本的同时,也为用户带来由AI创作赋予的全新体验,语音合成模型经过长时间的发展,由最初的基于拼接合成,到参数合成,逐渐达到了感情充沛、高流畅度、个性化的现阶
那么,智能时代跟FreeSWITCH什么关系呢?严格来说,其实没什么关系。你看,我今天又标题党了。
近期,改编自金宇澄同名小说,知名导演王家卫执导的电视剧《繁花》的热播引起剧烈反响。原著小说以其细腻的笔触和丰富的上海风情,描绘了 20 世纪 60 年代至 90 年代上海市民的生活图景,是一部具有浓厚地域特色和时代感的作品。王家卫的影视作品以其独特的美学风格和深刻的情感表达著称。沪语版剧中使用上海话配音,字证腔圆让人耳目一新,相信后面肯定会有更多、更好的沪语影视作品呈现给观众,也会有更多的优秀专家深度参与,用沪语来叙述上海故事。
文本到语音合成(Text to Speech,TTS)作为生成式人工智能(Generative AI 或 AIGC)的重要课题,在近年来取得了飞速发展。多年来,微软亚洲研究院机器学习组和微软 Azure 语音团队持续关注语音合成领域的研究与相关产品的研发。为了合成既自然又高质量的人类语音,NaturalSpeech 研究项目(https://aka.ms/speechresearch)应运而生。 NaturalSpeech 的研究分为以下几个阶段: 1)第一阶段,在单个说话人上取得媲美人类的语音质量。为此,
Google的DeepMind研究实验室昨天公布了其在计算机语音合成领域的最新成果——WaveNet。该语音合成系统能够模仿人类的声音,生成的原始音频质量优于目前的文本转语音系统(text to speech,简称TTS)。 DeepMind宣称,通过人耳测试,该技术使得模拟生成的语音与人类声音之间的差异缩小了一半。当然,这种测试不可避免地存在主观性。 WaveNet目前还没有被应用到谷歌(微博)的任何产品中,而且该系统需要强大的计算能力,近期也无法应用到真实世界场景。 让人类跟机器自由交谈是人机交互研究领
文本到语音合成(Text to Speech,TTS)作为生成式人工智能(Generative AI 或 AIGC)的重要课题,在近年来取得了飞速发展。在大模型(LLM)时代下,语音合成技术能够扩展大模型的语音交互能力,更是受到了广泛的关注。
【编者按】目前,基于神经网络的端到端文本到语音合成技术发展迅速,但仍面临不少问题——合成速度慢、稳定性差、可控性缺乏等。为此,微软亚洲研究院机器学习组和微软(亚洲)互联网工程院语音团队联合浙江大学提出了一种基于Transformer的新型前馈网络FastSpeech,兼具快速、鲁棒、可控等特点。与自回归的Transformer TTS相比,FastSpeech将梅尔谱的生成速度提高了近270倍,将端到端语音合成速度提高了38倍,单GPU上的语音合成速度达到了实时语音速度的30倍。
中学的时候参加朗诵比赛,老师教我在文字上“做记号”,把所有的停顿、重音、轻音、语速节奏等全都在文字上标记出来,这样再读就非常简单了。
语音合成(text to speech),简称TTS。将文字转化为语音的一种技术,类似于人类的嘴巴,通过不同的音色说出想表达的内容。将计算机自己产生的、或外部输入的文字信息转变为可以听得懂的、流利的汉语口语输出的技术。
最近在做一个文本转语音TTS(Text to Speech)的第三方软件封装,使用的是国内语音技术龙头安徽科大讯飞公司提供的离线引擎AiSound5.0,主要用于汽车导航用途。科大讯飞还提供了AiTalk用于语音识别,AiWrite用于手写识别服务等。另外还有针对6种平台的SDK和开发示例。
一个月之前,微软发布了基于深度神经网络的文本到语音(text-to-speech,TTS)系统,并且做为 Azure 认知服务中的一项,提供面向客户的预览版本。
随着人工智能技术的飞速发展,语音识别(ASR)和语音合成(TTS)技术已经成为智能语音服务领域的核心技术。腾讯云语音产品,凭借其业界领先的技术优势和极具竞争力的价格,为各行业提供了从标准化到定制化的全方位智能语音服务,广泛应用于多个行业场景,极大地推动了企业服务、阅读、教育、游戏、金融、电商等行业的智能化升级。
科技改变生活 近日,谷歌推出了新的语音合成系统Tacotron 2,这是一种直接从文本中合成语音的神经网络结构,即新型TTS系统,该系统结合了初代Tacotron和Deepmind WaveNet等研究的经验,在能力上有了进一步提升。 TTS技术即从文本到语音,它是语音合成应用的一种。在搭载神经网络算法的语音控制器作用下,文本输出的语音音律应使听众在听取信息时感觉自然,毫无机器语音输出的冷漠与生涩感,但是目前还没有一款系统可以做到。 2017年3月,谷歌推出了一种新的端到端语音合成系统Tacotron。
TTS(Text To Speech)是一个序列到序列的匹配问题。处理TTS的方法一般分为两部分:文本分析和语音合成(speech synthesis)。文本分析可能采用NLP方法。
机器之心原创 作者:李亚洲 近年来,随着深度神经网络的应用,计算机理解自然语音能力有了彻底革新,例如深度神经网络在语音识别、机器翻译中的应用。但是,使用计算机生成语音(语音合成(speech synthesis)或文本转语音(TTS)),仍在很大程度上基于所谓的拼接 TTS(concatenative TTS)。而这种传统的方法所合成语音的自然度、舒适度都有很大的缺陷。深度神经网络,能否像促进语音识别的发展一样推进语音合成的进步?这也成为了人工智能领域研究的课题之一。 2016 年,DeepMind 提
孩子进行英语启蒙,需要看很多英语绘本,而且要听配套的音频来练听力。但有些英语绘本是没有对应音频的,下面简单几步,就可以将任意英语绘本制作出对应的英语朗读音频。
智能音箱在ASR(语音识别)以及NLP自然语义处理常用框架 – 兔尔摩斯的文章 – 知乎
无论是家用产品,还是室外公共设备,市场上带有语音提示和语音预警的产品也与日俱增,越来越受到消费者的青睐,语音功能让产品更智能,极大的增强了用户的产品体验。
随着人工智能技术的飞速发展,人机交互的方式也在不断革新。腾讯云语音合成(TTS)技术,作为AI领域的一项重要应用,正在以前所未有的速度改变我们的生活和工作方式。大家好,我是AI大眼萌,今天就让我们一起探索这项技术的魅力和潜力!
所谓活到老,学到老,本篇开始我写的Android代码尽量都转为Android指定的官方语言Kotlin,一是技多不压身,二是Kotlin的语法与我接触的第一门开发语言Delphi有点像,学起来也不太难,所以直接在代码中开始使用才能掌握的更快。
疫情期间发现一个有趣的现象,有一类短视频父母刷抖音的时候经常会看到,这类视频只有一个或多个简单的背景图片,配合一段文字录音,讲一段新闻、故事、或者鸡汤。我想可能是他们对纯文本或者纯语音的内容都不感兴趣,更容易接受短视频这样简单的内容形式。又想到腾讯云有语音合成的产品,加上ffmpeg等视频处理工具,是不是可以批量生成一些这类短视频呢。
当AI技术与语音合成相遇,开源技术众多,为什么 ChatTTS 能够一夜爆火?你有听说过能说情感真切文字的 AI 吗?
androidauthority AI 科技评论消息,今日百度研究院在官网上正式推出了 Deep Voice:实时语音合成神经网络系统(Real-Time Neural Text-to-Speech for Production),Twitter 上也同步更新了消息,目前论文也已经投递 ICML 2017。 本系统完全依赖深度神经网络搭建而成,最大的优势在于能够满足实时转换的要求。在以前,音频合成的速度往往非常慢,需要花费数分钟到数小时不等的时间才能转换几秒的内容,而现在,百度研究院已经能实现实时合成,
漫谈语音合成之Char2Wav模型 语音合成是指将文本转化成音频的过程,整个过程的难点可以用两个词语来形容:清晰度(Intelligibility)和自然度(Naturalness),清晰度是指合成的音频是否是干净的,是否可以被人听懂;而自然度是指合成的音频是否融合了情感上的色彩。传统的语音合成通常有两种做法,一种是合成式,另外一种是参数式,下面我们分别看它们各自的特点。 合成式(Concatenative TTS),这种方法需要大量的剪辑音频组成的数据库,然后根据文本内容从数据库中挑选相应的音频片段,把它
做个比较,当机器的“脑子”里想到了一段内容时,或者是看到了一段话时,知道哪些字应该怎么读:
编者按:目前,人类使用的语言种类有近7000种,然而由于缺乏足够的语音-文本监督数据,绝大多数语言并没有对应的语音合成与识别功能。为此,微软亚洲研究院机器学习组联合微软(亚洲)互联网工程院语音团队在ICML 2019上提出了极低资源下的语音合成与识别新方法,帮助所有人都可以享受到最新语音技术带来的便捷。
9月3日,腾讯云语音合成团队正式开放面向全量用户的合成音频平台,该平台可以帮助用户零门槛借助语音合成技术生成一段个性化音频,为音视频行业内容创作提供更为快捷的服务。同时,腾讯云还正式发布了11个新增音色,覆盖智能客服、有声阅读、新闻播报、粤语方言等多个业务场景,满足用户在智能语音领域不同应用场景的多样化需求。 新增合成音频开放平台,全面降低语音合成接入门槛 据悉,腾讯云新增合成音频平台服务,后续,用户可以直接在语音合成控制台上生成和下载文本对应的音频文件,让即使不懂开发的普通用户也可以方便、快捷地使用
---- 新智元报道 编辑:LRS 【新智元导读】微软新模型VALL-E实现地表最强zero-shot语音合成,刚开口声音就被偷了? 让ChatGPT帮你写剧本,Stable Diffusion生成插图,做视频就差个配音演员了?它来了! 最近来自微软的研究人员发布了一个全新的文本到语音(text-to-speech, TTS)模型VALL-E,只需要提供三秒的音频样本即可模拟输入人声,并根据输入文本合成出对应的音频,而且还可以保持说话者的情感基调。 论文链接:https://arxiv.org
---- 新智元报道 编辑:LRS 【新智元导读】最近微软全华班发布了一个新模型NaturalSpeech,在语音合成领域首次达到人类水平,人耳难分真假。 现在很多视频都不采用人类配音,而是让「佟掌柜」、「东北大哥」等角色友情客串,在读起文本来还真有点意思。 相比之前机械化的电子音来说,文本转语音(text to speech, TTS)技术近年来取得了很大进展,但目前来说,合成的语音听起来仍然是机械发声,和人类的语音还有一定差距。 问题来了:怎么才能判断一个TTS系统达到了人类水平? 最近微软
英语听力是英语学习中的一个重要组成部分,它对于提高语言理解和交流能力至关重要。可理解性学习(comprehensible input)是语言习得理论中的一个概念,由语言学家Stephen Krashen提出,指的是学习者在理解语言输入的同时,自然而然地习得语言。
机器之心专栏 本专栏由机器之心SOTA!模型资源站出品,每周日于机器之心公众号持续更新。 本专栏将逐一盘点自然语言处理、计算机视觉等领域下的常见任务,并对在这些任务上取得过 SOTA 的经典模型逐一详解。前往 SOTA!模型资源站(sota.jiqizhixin.com)即可获取本文中包含的模型实现代码、预训练模型及 API 等资源。 本文将分 2 期进行连载,共介绍 19 个在语音合成任务上曾取得 SOTA 的经典模型。 第 1 期:BLSTM-RNN、WaveNet、SampleRNN、Char2Wav
选自arXiv 机器之心编译 参与:刘晓坤、李泽南 今年 2 月份,百度提出了完全由深度神经网络构建的高质量文本转语音(TTS)系统 Deep Voice。这一系统随后在今年五月份推出了第二个版本。近日,百度发布了 Deep Voice 3,该研究的论文已经提交 ICLR 2018 大会。 人工语音合成(亦称文本到语音,TTS)传统上都是以复杂的多态手工设计管道(Taylor, 2009)实现的。最新的对神经 TTS 的研究出现了令人印象深刻的结果—放弃管道并用更简单的特征、更少的组成获得了更高质量的合成语
acotron 并没有解决所有的问题,有时候它合成出的发音会出错。这一次我们会先讲一讲 Tacotron 以外的一些模型。这些模型是基于 Tacotron 的变种。有的解决它的发音出错问题,有的则在其他方面,如注意力,损失,训练技巧上创新,来让 Tacotron 的表现变得更好。还有的是可以控制语气停顿等条件的语音合成,比如第七代微软小冰中用到的,基于人设的语音合成
鱼羊 发自 凹非寺 量子位 报道 | 公众号 QbitAI 先来听一小段音乐: 你能听出,这其实是AI唱的吗? 虽然日常和你对话的siri声音机械,还常常胡乱断句,但实际上,最新的技术进展显示,AI的语音合成能力已经可以说得上是以假乱真。 比如英伟达,最近就发布了一个更懂节奏、更具感情的语音合成AI。 在英伟达的纪录片中,她是这样自我介绍的: 口齿清晰自不必说,这气息顿挫、情绪把控,播音员范儿够正不? 帧级控制合成语音 英伟达将在9月3日的语音技术顶会Interspeech 2021上展示该项目的最新成果。
选自Baidu Blog 机器之心编译 参与:吴攀、蒋思源 今年 2 月份,百度提出了一种完全由深度神经网络构建的高质量文本转语音(TTS)系统 Deep Voice,参见机器之心报道《百度提出 Deep Voice:实时的神经语音合成系统》。近日,百度对这一系统进行了更新,提出了 Deep Voice 2,其可以使用单个模型生成不同的声音。百度在其研究博客上对这一研究进行了简单的介绍,机器之心对该博客文章和论文部分内容进行了编译介绍。有关文本转语音的更多研究,可扩展阅读机器之心文章《语音合成到了跳变点?深
领取专属 10元无门槛券
手把手带您无忧上云